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ABSTRACT: Hair analysis is an area of increasing interest in the fields of medical
and forensic sciences. Human scalp hair has attractive features in clinical studies
because hair can be sampled easily and noninvasively from human subjects, and
unlike blood and urine samples, it contains a chronological record of medication
use. Keratin protein is the major component of scalp hair shaft material and it is
composed of 21 amino acids. The method used herein for the amino acid
determination in hair included keratin protein acid hydrolysis using 6 M
hydrochloric acid (HCl), followed by amino acids derivatization using N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA), and the determination of derivat-
ized amino acids by gas chromatography/mass spectrometry (GC/MS). Amino
acid profiles of scalp hair of 27 Jordanian subjects (15 diabetes mellitus (DM) type
2 patients and 12 control subjects) were analyzed. A fuzzy rule-building expert
system (FuRES) classified the amino acid profiles into diabetic and control groups
based on multivariate analyses of the abundance of 14 amino acids. The sensitivity
and specificity were 100% for diabetes detection using leave-one-individual-out cross-validation. The areas under the receiver
operative characteristics (ROC) curves were 1.0, which represents a highly sensitive and specific diabetes test. The nonessential
amino acids Gly and Glu, and the essential amino acid Ile were more abundant in the scalp hair of diabetic patients compared to
the hair of control subjects. The associations between the abundance of amino acids of human hair and health status may have
clinical applications in providing diagnostic indicator or predicting other chronic or acute diseases.

Diabetes mellitus (DM) is a major public health problem:
there were an estimated 150 million persons with

diabetes in the developing world in 2000, and this number is
predicted to increase 300 million in 2025.1 DM is a chronic
illness that is diagnosed by a fasting blood glucose greater than
or equal to 126 mg/dL.2 Diabetes mellitus results when
pancreatic β-cells are unable to maintain adequate insulin
secretion to prevent hyperglycemia or because cells become
resistant to insulin.2,3 There are two main types of DM; type 1
and type 2. Type 1 is characterized by insulin deficiency
because pancreatic beta cells fail to produce insulin. Type 2 DM
is characterized with insulin resistance, wherein target cells fail
to use or respond to insulin properly. In the case of gestational
diabetes, pregnant women without a previous diagnosis of
diabetes develop high blood glucose levels and the symptoms
are similar to type 2 DM.2−4

The major practical advantage of hair analysis is that the
detection window, days to years, depending on the length of
the shaft hair, is considerably longer than those of urine and
blood (i.e., hours to 2−4 days).5 Moreover, hair collection is
noninvasive, can be witnessed first-hand, and can be stored for
long times at room temperature, and there is no need for

special apparatus or training for sampling human hair.5,6 Hair
samples contain longer-term histories of diseases and
medications compared with other biological samples. There-
fore, hair could be a potential sample for clinical testing and
convenient diagnostic marker of diseases. Considering that the
collection of blood specimens from elderly patients, acutely ill
or injured, and newborn babies may be difficult, invasive, or
painful, the development of analytical methods using hair
samples has many advantages.
There are several studies concerned with the relationship

between the amino acid content of blood and diabetes.
Anuradha4a reviewed the relationships between insulin
secretion and sensitivity with respect to amino acid content
(e.g., via exogenous sources) of plasma. In general, insulin
decreases the breakdown of protein; thus a lack of insulin
increases the circulating amino acids and as a consequence
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putatively increases the concentration of some amino acids in
hair.
Insulin also helps cells to absorb the circulating amino acids

from the blood. Therefore, a lack of insulin or resistance to
insulin inhibits amino acid absorption.4a For example,
significant increases in threonine (Thr), alanine (Ala), and
isoleucine (Ile) in plasma have been reported in cases of type 2
DM. For one study, a significant increase in threonine (Thr),
alanine (Ala), and isoleucine (Ile) were reported in type 2
DM.4a In other studies, exogenous amino acids are able to
enhance insulin secretion of insulin from pancreatic cells. For
example, Van loon et al.7 reported that plasma insulin
concentrations increase significantly for type 2 DM patients
and controls after oral intake of a mixture of leucine (Leu) and
phenylalanine (Phe) amino acids. Intravenous administration of
a mixture of 10 essential amino acids: arginine (Arg), lysine
(Lys), Phe, Leu, methionine (Met), valine (Val), histidine
(His), Ile, Thr, and tryptophan (Trp) increased the insulin
concentration in plasma.8 Also, key amino acids such as Ala,
glutamine (Gln), Leu, Ile, and Arg were reported to stimulate
β-cell insulin secretion.9 This mechanism of stimulation is
complex and involves mitochondrial metabolism.
Amino acid profiling could provide a significant indicator for

high-risk individuals who have type 2 DM. For example, Wang
et al. concluded that raised levels of five branched-chain and
aromatic amino acids: Ile, Leu, Val, Phe, and tyrosine (Tyr)
amino acids in the blood could be an indicator for the
development of diabetes later in life.10

Hair may contain possible biomarkers for DM and an
alternative sample to blood and urine, which are the routine
samples of choice for the analysis of biological specimens. Hair
consists of two main parts: the hair root, which is embedded in
the cavity known as the hair follicle, and hair shaft, which is the
visible part of hair projecting from the skin surface.11 Human
scalp hair grows at a rate of approximately 0.4 mm/day, or 1
cm/month.11,12 Human hair comprises approximately 80%
keratin protein13 and the remaining constituents are water
(6%), lipids(1%−9%), pigment (less than 3%), and trace
elements (less than 1%).11 Amino acids are the building blocks
of keratin of hair, which is composed of 21 amino acids.11,14

Because the hair follicle uses circulating blood as the source of
amino acids, hair growth can be influenced by the
concentrations or isotope ratios of amino acids in blood.12,14

There are relatively few studies associating diabetes and the
amino acid composition of human scalp hair. For example,
Oimomi et al. found fructose-lysine (which is formed by
binding glucose to lysine) is significantly higher in the hair of
diabetic patients than in control subjects.15 Mogos et al.
compared scalp hair samples of control subjects to scalp hair
samples of diabetic patients based on the content of 12 amino
acids, that is, cysteine (Cys), cystine (Cyt), lysine (Lys), Thr,
serine (Ser), Ala, Tyr, Val, Leu, Ile, aspartic acid (Asp), and
glutamic acid (Glu).16 They found higher levels of all amino
acids in the diabetic hair than the hair of control subjects except
for Cyt.
Fourteen amino acids, Ala, Gly, Val, Leu, Ile, Pro, Ser, Thr,

Asp, Cys, Glu, Phe, Lys, and Tyr, were profiled in this
preliminary study. The method used here was previously
developed.17 Other amino acids were not studied because they
are either destroyed during the acid hydrolysis step (Trp, Cyt,
and His) or undergo oxidation (Met). Gln and Asn are typically
deamidated to Asp and Glu, respectively, under acid hydrolysis
conditions. Also, Arg decomposes to ornithine during silylation,

which can yield inaccurate values in the analysis of free amino
acids in extracts of biological fluids, as well as cell and tissue
extracts.18 These known issues were taken into account in the
present study.
This case-control study used a method of analysis for

classifying diabetic patients from control subjects based on
measuring the concentrations of 14 amino acids of the scalp
hair shaft. The strengths of this pilot study stem from the case-
control design, which matches the average age and sex for both
groups. That three separate digestions and derivatization steps
were completed on different days for each subject also provides
confidence in the robustness of the method and data analysis.
In this preliminary study, the scalp hair samples from 27

subjects were collected from the mountain region of Jordan.
The analysis included keratin protein acid hydrolysis and the
determination of derivatized amino acids by gas chromatog-
raphy/mass spectrometry (GC/MS). The proposed method of
analysis could be quite useful for screening biomarkers of other
diseases that influence metabolism and amino acid concen-
trations in blood.

■ EXPERIMENTAL SECTION
Sampling and Data Collection. This study was approved

by Ohio University institution review board (IRB no. 12X029)
and King Abdullah University Hospital institution review board
(IRB no. 10/215/2444). The 27 participating subjects were
selected randomly from the mountain area in Jordan. The
subjects were identified from the database of the General Civil
Status Department. This Department is a national bureau that
stores the personal information from all Jordanians. A case-
control study was conducted by collecting scalp hair samples
from 15 type 2 diabetic patients and a control group of 12
subjects who reported no lifetime history of type 2 DM. The
subjects of both groups (case and control) were matched by
age and sex.
During the scheduled home visits, written informed consent

was obtained from all cases and controls before participating in
the study. The subjects completed extensive questionnaires
about their demographic information (age, sex, and nation-
ality), medical history, and dietary habits. For long hair, a 1 cm
diameter lock of long hair adjacent to the scalp was cut from
the posterior vertex region using surgical scissors. For subjects
with shorter hair, a 2−3 cm diameter lock of short hair was cut
adjacent to the scalp using clippers. Each hair sample was
placed in a sealed plastic baggie labeled with the subject’s
identification number. Hair samples used in this study were
reported to have no dye treatments, bleaching, or any other
chemical treatment besides conditioners. Also, none of the
subjects consumed alcoholic beverages or smoked tobacco.

Reagents and Supplies. The use of an internal standard is
required to correct any variation during hydrolysis, derivatiza-
tion, and analysis. Norvaline (Nor) was purchased from Sigma-
Aldrich (St. Louis, MO, USA) and was used as an internal
standard because it is an exogenous amino acid that is not
synthesized by the human body. The derivatizing reagent was
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) (Supelco
Analytical, Bellefonte, PA, USA). Hydrochloric acid (HCl)
was used as a hydrolysis agent to liberate free amino acids from
human hair keratin. Acetonitrile, methanol, acetone, and
chloroform were purchased from GPS Chemicals (Columbus,
OH, USA).
This study used 4 mL glass vials with a phenolic rubber lined

cap (Qorpak, Bridgeville, PA, USA). Solutions were filtered

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.5b00460
Anal. Chem. 2015, 87, 7078−7084

7079

http://dx.doi.org/10.1021/acs.analchem.5b00460


through a 13 mm × 0.45 μm, polyvinylidene difluouride
(PVDF) filter (Bonna-Agela Technologies, Wilmington, DE,
USA). The nitrogen generator was purchased from Parker
Hannifin Corporation (Haverhill, MA, USA). Hair samples
were washed, prepared, and analyzed in a similar procedure to
other reports.17,19

Hair Sample Preparation. Each hair specimen was rinsed
two times in deionized water and was vortexed in a 1:1:1 (by
volume) solution of chloroform, methanol, and acetone for 1
min to remove surface contamination of oils and lipids.19 The
hair was then dried under a constant stream of 4 L/min
nitrogen to remove excess solvent. The clean, dry long hair was
then cut into 1 cm lengths from the proximal ends (i.e., close to
the scalp) and distal ends and physically pulverized and

homogenized by placing ∼20 mg of hair into a capped plastic
vial with 8 stainless steel beads for 1 min using a mini bead
beater (BioSpec Products, Inc., Bartlesville, OK, USA) at 4800
rpm. A 3 mg portion of fine powder was transferred into a 4 mL
glass vial for hydrolysis.

Hair Sample Analysis. The hair powder of each sample
was separated into three precisely weighed subsamples (3.00 ±
0.03 mg [SD]), and placed in 4 mL glass vials with phenolic-
rubber-lined caps. Thereafter, 0.30 mg of Nor was added. Each
subsample was hydrolyzed by adding 0.3 mL of 6 M HCl to the
vial and tightly capping them. To heat the samples, an
aluminum block with holes to accommodate the glass vials was
mounted on a hot-plate for 24 h at 110 °C.18b,c,20 After the
solution was cooled to room temperature for 5 min, the

Figure 1. Left column presents principal component scores of the unprocessed amino acid concentrations, while the right column present the scores
after scaling by the pooled replicate standard deviation and normalization of the objects to unit vector length. The top corresponds to the 243 amino
acid profiles, the middle to the 81 digests, and the bottom to the 27 individual subjects.
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solutions were filtered using 0.45 μm PVDF filters to remove
undigested melanins and dried under a constant stream of 4 L/
min nitrogen. Hair samples from an individual underwent three
replicate digestions on different days.
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) is a

silylating reagent that replaces acidic protons of the amino
acids (e.g., SH, OH, NH, and COOH) with a nonpolar
trimethylsilane group. By replacing the acidic protons of the
amino acids, the polarity is reduced and the volatility is
increased.21 The dried amino acid residues were dissolved in a
100-μL aliquot of acetonitrile and derivatized with the addition
of a 100-μL aliquot of BSTFA. The vials were tightly capped,
ultrasonicated for 1 min, and mounted on a hot-plate for 30
min at 100 °C. After cooling the solution at room temperature
for 10 min, a 100-μL aliquot of the solution was transferred into
a new vial for GC/MS analysis.
GC/MS Analysis. Amino acid derivatives were analyzed

with a Shimadzu GC/MS instrument (QP-2010SE, Scientific
Instrument, Inc. Columbia, MA, USA) using a previously
validated method. Amino acids were separated on a 5%
diphenyl-dimethylpolysiloxane capillary column (SHRX1−
5MS, 30 m × 0.25 mm × 0.25 μm). Ultrahigh-purity helium
was used as a carrier gas at a constant flow rate of 1.0 mL/min.
The temperature of the column was programmed to rise from
70 to 170 °C at a rate of 10 °C/min, and then was ramped to
280 °C at a rate of 30 °C/min, at which it was held for 3 min.
The total run time was 16.6 min.
Sample injection was performed in split injection mode (1:20

ratio) at 280 °C using an injection volume of 1 μL. Triplicate
injections of triplicate samples (n = 9) were made with a
random block design using acetonitrile as a solvent blank before
each injection. The random block design was used to collect
triplicate measurements of each hair digestion with each block
of replicates separated by 2 days. Three solvent vials of
acetonitrile, methanol, and acetone were used sequentially as
cleaning solvents for the autosampler injection syringe.
The mass spectrometer was operated in fast automated scan

and selected-ion-monitoring type (FASST) mode, which
switches back and forth between full scan mode and selected
ion monitoring (SIM) at a rate of 2 Hz during a single analysis.
In full scan mode, the mass analyzer scanned from m/z of 50 to
m/z of 500 with a scan time of 0.3 s. For SIM, the analyzer
scanned three selected ions with a scan time of 0.2 s. The target
ions for quantitation were established previously, and were
typically the fragment ions of the highest intensity (base peak)
for each amino acid. As is typical, two additional fragments of
the next greatest intensities were used to support the qualitative
assignment for each amino acid.22 The target and reference ions
used for the integration of peak areas were reported in previous
work.17a,22

Statistical Data Analysis. Statistical analyses were
performed using MATLAB R2012b or R2014a (The Math-
Works Inc., Natick, MA). All statistical tests were conducted at
the 95% confidence level. Amino acids in the hair protein were
determined using the relative peak areas (i.e., referenced to the
Nor internal standard). Concentrations (w/w) were obtained
from external calibration curves obtained from liquid injections
of standard amino acid solutions.
The fuzzy rule-building expert system (FuRES) constructs

classification models of amino acid profiles that are amenable to
interpretation. This system builds a classification tree, which is a
sequence of multivariate rules used to separate the profiles into
their appropriate classes. The branches of the classification tree

comprise rules in the form of linear discriminants. The rules are
obtained by minimizing the fuzzy entropy H of classification.23

The receiver operating characteristic curve (ROC) displays
the true positive detection rate (i.e., sensitivity) with respect to
the false positive detection rate (1 − specificity) with respect to
the change in classification threshold. The area under the curve
(AUC) is a measure of the classifiers performance with an AUC
of 1 as an ideal result and AUC below 0.5 a random result.24

One-way analysis of variance (ANOVA) was used to
compare the mean concentrations of each amino acid in the
diseased and the nondiseased groups of subjects, and to find
which amino acids have the largest ratio between between-
individual and within-individual variation.25 These results are
reported in the Supporting Information.

■ RESULTS AND DISCUSSION

Details regarding the participant characteristics, the detected
amino acid profile of scalp hair, the relative precision of the
amino acid profiles, and the analysis of variance of the amino
acid concentrations can all be found in the Supporting
Information.
There is inherent variance in the digestion and GC/MS

analysis of the hair samples, so the concentration profiles were
subjected to principal component analysis to characterize this
variation. The pooled standard deviations of the amino acids
with respect to each individual (i.e., 9 profiles) were calculated
to scale the amino acids by their variability. The amino acid
concentrations were scaled by the pooled standard deviations.
Then each profile was normalized to unit vector length.
Figure 1 gives the principal component scores for three levels

of the data, 243 amino acid profiles, 81 digestions, and 27
individuals before and after preprocessing. Three evaluations
were run classifying the profiles, the average of the three
profiles for each digest, and the average of nine profiles for each
individual.

FuRES Classification. FuRES was used to classify the
subjects according to their diabetes status based on multivariate
analyses of the preprocessed 14 amino acids. The same
preprocessing that was used for the PCA was also used for the
classification studies. Averaged profiles were calculated from the
scaled profiles and then were normalized.
Three models of FuRES were used: the profiles without

averaging (n = 9 for each individual), the average of the three
profiles obtained from the same digestion (average across
digestions, n = 3 for each individual), and the average of all 9
profiles for each individual (average across individuals, n = 1 for
each individual). The classification rates of diabetes after leave-
one-profile-out, leave-one-digestion-out, and leave-one-individ-
ual-out cross-validations are reported in Table 1.
The performance of a diagnostic test is evaluated by

sensitivity, the number of proportion of correct detections,

Table 1. FuRES Classification Rates of Diabetes, Sensitivity,
and Specificity of the Three Modes of Evaluation

validation

factor
profiles

(n = 243)
digestions
(n = 81)

individuals
(n = 27)

classification
accuracy

96% 94% 100%

sensitivity 0.97 0.96 1.00
specificity 0.94 0.92 1.00
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and specificity, the proportion of correct nondetections.
Sensitivity and specificity can be displayed graphically using a
technique known as the receiver operating characteristic
(ROC) curve.24 They are given in Figures 3 and 5.
A FuRES classification tree is the collection of rules used to

separate all the samples. First, the classification was modeled
using the 243 preprocessed amino acid profiles. The diabetic
group is classified from the control group with a 7-rule tree
(Figure 2). The classification rate for the model was 96% after
the leave-one-profile-out validation. Note that profiles from the
same digestion were measured several days apart.

Sensitivity, or the true-positive rate, is plotted on the ordinate
as a function of 1 − specificity (the false-positive rate) on the
abscissa. Performance is measured by the area under the ROC
curve. Figure 3 is the ROC curve for identifying type 2 DM
using the 243 amino acid profiles. The sensitivity of the
evaluation is 0.97, while the specificity is 0.94 (Table 1). The
areas under the two curves are both 0.99, which represents a
highly sensitive and specific classification. The ROC curves are

consistent with the FuRES diabetes prediction rate of 96%.
FuRES assigns the class to the profile with the largest response
or output, while the ROC curve displays the relationships of the
true positive rate with respect to the false positive rate with
respect to the classification threshold. Therefore, if the
classification threshold is carefully adjusted for each evaluation
then the prediction rates may improve to the values given by
the ROC curves.
Using an alternative approach, the average of the three GC/

MS profiles of each subsample (digestion) was used as a basis
for classification. Figure 4 gives the resulting three-rule

classification tree built from the 81 preprocessed profiles. The
81 FuRES models were built from the profiles of the 14 amino
acids and the 80 digestions using a leave-one-digestion-out
validation. The prediction rate for this evaluation was 94%.
The ROC curve was used to display these prediction results.

The sensitivity of the model was 0.96, while the specificity was
0.92 (Table 1). The area under the curve is 0.98 (Figure 5) that
typifies an effective classification model that discriminates
diabetic patients from the control subjects and is consistent
with the leave-one-digestion-out prediction rate of 94%.
Finally, the average of all nine measurements for each

individual was calculated and used as the basis for classification

Figure 2. FuRES diabetes classification tree from the 243 preprocessed
amino acid profiles. Nc is the number of subjects and the class is given
in each leaf node. H is the entropy of the classification rule and the
number of rules required to build the tree are given in the rectangle.
There is no splitting of the subjects among the circular leaf nodes.

Figure 3. ROC curves for the leave-one-profile-out cross-validation for
the FuRES type 2 DM and control classes. AUC is the area under the
curve.

Figure 4. FuRES diabetes classification tree for type 2 diabetes from
the average amino acid profiles of hair for 81 digestion (n = 3 for each
digestion). Nc is the number of subjects, and the name of each group
is given in each leaf node. H is the entropy of the classification rule,
and the number of rules required to build the tree are given in the
rectangle.

Figure 5. Receiver operating characteristic curves digestions (n = 3
profiles) obtained from the FuRES classes from the leave-one-
digestion-out validation.
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of the two groups using FuRES. The results show that the
diabetic group can be classified from the control group using a
tree comprising a single rule. The leave-one-individual-out
cross-validation rate is 100% (Figure 6).

The corresponding ROC curve gave sensitivities and the
specificities that were each 1.00 (Table 1), so the area under
this ROC curve also was 1.00. Thus, when the amino profiles
were averaged for each individual subject a highly sensitive and
specific test was achieved for type 2 DM, although the
population in the study was relatively small compared to large-
scale clinical studies. Note that during the validation the same
individual’s profiles were never used for model building and
prediction, so this model generalized across the individuals.
On the basis of the prediction results of FuRES from the

three data sets, we could properly classify the diabetic patients
from the control subjects with greater than 94% prediction rate
using the average of one, three, or nine replicate GC/MS
analyses for each subject. In addition to classification, the
FuRES loadings of the amino acid profiles provide further
insight into the relationship between amino acid profile and
disease state.
FuRES Variable Loadings. The average variable loadings

obtained from 27 FuRES models for the 14 amino acids of
diabetes classification using the leave-one-individual-out cross-
validation is presented in Figure 7. Average variable loadings of
the 14 amino acids of diabetes classification with 95%

confidence intervals. The positive peaks correspond to amino
acids that are loaded more strongly for the control group
relative to the diabetic group, and they include the amino acids
Pro, Ser, Asp, Lys, and Tyr. In contrast, the negatively weighted
peaks Ile, Thr, and Glu, in Figure 7 correspond to amino acids
that are more heavily loaded for the diabetic subjects relative to
the control subjects. The 95% confidence intervals provide a
measure of the precision of the amino acid profile.

■ CONCLUSIONS
The FuRES classification rates using leave-one-out validation
were 96%, 94%, and 100% using the 243 amino acid profiles,
the 81 averaged profiles for each digestion, and the average of
the nine profiles for the 27 individual subjects, respectively.
Note that the amino acid profiles from the same individual and
digestion were collected several days apart. The hair samples
from an individual were digested 3 times and were digested 3
days or further apart, so this study shows that the robustness for
diagnosing diabetes using amino acid profiles in hair. In
addition to FuRES prediction results, the area under the ROC
curve exceeded 0.95 for each of the three validations, which
further demonstrated the detection of diabetes from hair
samples. These results suggest that GC/MS combined with
FuRES provides a powerful method for the classification of type
2 DM. These preliminary results suggest that amino acid
profiles in hair could assist in diabetes risk assessment. A large
scale clinical study would help validate these results. The key
issue is to improve the digestion of the hair proteins to improve
the reproducibility of the amino acid profiles. Moreover,
intraindividual biological variability of amino acids composition
should be studied by collecting different hair samples of same
subject from different proximal head sites.
The outcomes, as well as other previous studies, provide

good evidence for the feasibility of the abundance of amino
acids to distinguish between the hairs of control individuals and
type 2 diabetic patients. Further studies have to be carried out
first to decrease the hydrolysis time and second to develop a
method that could enable analysis of more than 14 amino acids
or include more orthogonal variables to assist the classification.
Other studies of large number of subjects from different
geographical origins are in need to evaluate the ability of amino
acid profiles to predict type 2 DM of different stages for a
global population. In addition, fasting blood of the same
subjects could be collected to investigate the correlation
between the amino acid concentrations in blood and hair with
the diagnosis history (i.e., onset of diabetes).
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Participant characteristics, amino acid profile of the scalp hair,
precision of GC/MS analysis of amino acids of the same
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