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A fast method that can be used to classify unknown jet fuel types or detect possible property changes
in jet fuel physical properties is of paramount interest to national defense and the airline industries.
While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study
jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or
origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of
building classifiers, the data were pretreated with and without wavelet transformation and evaluated
with respect to performance. Principal component transformation was used to compress the two-way
data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy
for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate
the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used
as positively biased references for comparing the FuRES prediction results. The prediction results for the
jet fuel samples obtained with these two methods were compared statistically. The projected difference
resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots

of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the
method. The only change in classification parameters was the use of polynomial retention time alignment
to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect
classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes
characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a

chan
monitoring tool to track
changes.

. Introduction

Research on the analysis of fuel is important and has been
pplied to safety assurance [1], workers’ health protection [1,2],
rson and forensic investigation [3–5] energy study [6,7] and envi-
onmental inspection [8–10]. To ensure aircraft fuel safety and
uality requirements to be “clean” and “dry”, classification of jet
uels is extremely important because quality degradation may
ccur as a result of aging, contamination, mislabeling, and even

dulteration. Therefore, classification by lot number can help char-
cterize and establish the provenance of fuels.

The analytical methodologies used to characterize jet fuels
nclude gas chromatography coupled with mass spectrometry

∗ Corresponding author.
E-mail address: peter.harrington@ohio.edu (P.B. Harrington).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.05.063
ges in the chemical composition of fuels that may also lead to property

© 2010 Elsevier B.V. All rights reserved.

(GC/MS) [11–14], GC coupled with other detectors such as a flame
ionization detector (GC-FID) [15], near-infrared (NIR) [16–19]
and mid-infrared (mid-IR) [1,20,21], high performance liquid
chromatography (HPLC) [13,22–24] and 13C NMR spectroscopy
[22,23,25].

Modern methods of analysis may yield overwhelming quantities
of data so that usually only fractions of the acquired data are used in
the decision making process. For example, many GC/MS studies rely
on the total ion current (TIC) chromatograms to classify jet fuels.
Chemometrics provides a framework to utilize all the information
acquired during the measurement to solve complex problems such
as classification of fuels. Chemometric data pretreatment methods

commonly used in the study of fuels include spectral baseline-
correction and retention time alignment [26–29], data compression
[30], etc. Principal component analysis (PCA) is useful for dimen-
sion reduction in the study of jet fuels and other petroleum products
[3,26]. Chemometric methods used for classification include artifi-
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ial neural networks (ANNs) [14], soft independent modeling class
nalogy (SIMCA) [5,14], K-Nearest neighbor (KNN) [14,31], partial
east squares (PLS) regression [17,28], multivariate least squares
MLS) regression, linear discriminant analysis (LDA) [32], multiple
inear regression (MLR) [33,34], etc. The fuzzy rule-building expert
ystem (FuRES) [35] has demonstrated utility for classification of
et fuels because the models are reproducible and amenable to
nterpretation [27].

As a major instrumental method, GC has found extensive appli-
ation in research of jet fuels because of the volatile nature of jet fuel
omponents and the powerful separation capacity of GC. Especially
hen GC is coupled with MS, it can give a three-way data set (GC,
S and numbers of samples), which is rich in information of the

omposition of fuel products. Two-dimensional gas chromatogra-
hy (GC × GC) has been also widely used because of the advantages
f larger peak capacity, higher separation capacity, an increase in
ensitivity and a faster analysis speed [36,37].

Doble et al. conducted a GC/MS study to classify premium and
egular gasoline and their seasonal formulation (winter or summer)
3]. By using the Mahalanobis distances calculated from the prin-
ipal components scores, a classification rate of about 80–93% was
chieved over the premium and regular gasoline samples, but only
48–62% classification rate was obtained for the winter and sum-
er samples as the sub-groups. When an ANN model, which was

rained by back propagation and conjugate gradient algorithms,
as used, a 100% classification rate for the premium and regular

amples and a 96% classification rate for the summer and winter
ub-groups were achieved. Although this method was applied to
he gasoline products instead of jet fuels, it also can be used in the
rediction of jet fuel properties.

In the extensive study about jet fuels conducted by the Naval
esearch Lab (NRL), jet fuel property prediction was the focus,

n which they have been successful [17,38–40]. They used near-
nfrared (NIR) spectroscopy, Raman spectroscopy and GC with a
ame ionization detector (GC-FID) or a mass spectrometer detec-
or (GC-MS) for data collection. The chemometric technique used by
hese researchers focused on partial least squares (PLS) regression.

According to the definition given by Matisová et al., fast GC
as a separation time per sample of a few minutes and a speed
nhancement factor of 5–30 while the plate number can be kept
omparable to the conventional gas chromatography [41]. By using
icrobore columns, faster temperature programming, a faster car-

ier gas speed, and a higher head pressure, etc., fast GC separation
an be realized. Compared with conventional GC, fast GC offers the
dvantages of a tremendous improvement in laboratory through-
ut, a much lower cost per sample, a shorter time needed for the
nalysis, and especially the possibility of the usage as an online
onitoring means. However, fast GC suffers from limited chro-
atographic resolution especially when it is used to separate very

omplicated samples such as jet fuels. It also requires a faster detec-
ion method to match the faster separation speed.

As one of the most common, sensitive, and informative detectors
or GC, MS has promise for the composition-property correlation
tudy of jet fuels. Time-of-flight (ToF) mass spectrometers are capa-
le of very fast data acquisition rates (kHz duty cycles are possible.)
s summarized in a review about application of GC/ToF-MS [42].
owever, they have the disadvantage of relatively higher costs to
urchase and maintain compared to ion trap mass spectrometers.

Most conventional scanning MS methods, such as the
uadrupole ion trap MS, have limited scan speeds of 5500 Th/s (scan
ate parameter: 0.18 ms/Th), or acquisition rate of ∼3 Hz, which

ill be insufficient when it is used as a detection means for fast
C. Yang and Bier proposed a fast ion trap MS scan strategy with a
can rate as fast as 66 660 Th/s (scan rate parameter: 0.015 ms/Th),
hich is 12 times the scan rate of conventional MS [43]. Yang and
ier noted a fortuitous and unique result of increasing the scan
2011) 1260–1268 1261

rate of the quadrupole ion trap, an overall signal-to-noise improve-
ment through the reduction in space charge effects and a decrease
in peak widths (hence an increase in peak heights). Fast scanning
in QITs has the disadvantages of decreased mass resolution and a
possible decrease in mass accuracy. The primary advantage is that
fast scanning QITs are better suited for coupling with time-limited
fast chromatographic separations that yield peaks in narrow time
windows.

FuRES is a pattern recognition technique devised by Harring-
ton [35]. It has been successfully used in classification of complex
data sets [27,44,45], especially jet fuel data [27]. FuRES provides an
easy-to-understand mechanism of inference that is represented as
a classification tree. The principal component transformation (PCT)
is used to reduce the computational load of the FuRES nonlinear
optimization that is required to construct the multivariate rules.
FuRES is a robust and efficient pattern recognition method.

In the present work, for the first time fast GC coupled with a fast
scanning quadrupole ion trap mass spectrometer was applied as the
three-way data collection method [46]. The data were imported and
compressed by using principal component transformation before
being subjected to the FuRES and PLS classification. As a com-
parison, the same data set was also compressed by both wavelet
transformation and principal component transformation before
they were subjected to the FuRES and PLS classification. A classifica-
tion accuracy of 99.8 ± 0.5% was obtained using the FuRES classifier
and fast chromatography with fast scanning mass spectrometry for
both with wavelet compression and without wavelet compression.

The work conducted by the NRL focused on mainly the indi-
vidual property prediction of jet fuel samples to screen possible
property changes [17,38–40]. Different from work done by the NRL,
this work emphasized on whole sample information derived from
the three-way fast GC/fast MS data set as the foundation of classifi-
cation. If the fuel is recognized by its lot number, then the physical
properties can be deduced to be similar as those of the lot. The
accuracy, high speed, and reliability of this method demonstrate
the great potential for screening jet fuels.

2. Experimental section

2.1. Reagents and sample preparation

The jet fuel samples were provided by the Air Force Research
Laboratory of Wright Patterson Air Force Base (Dayton, OH). All the
samples were stored in borosilicate glass vials at room temperature
and used as received.

Twenty samples were chosen randomly from a library of 200
samples, which would ensure the sampling probability of all sam-
ples to be equal, and diluted 1:50 with pentane of HPLC grade
(Sigma Aldrich). Dilution of samples with pentane was necessary to
avoid detector saturation. Because the sampling was random from
the library, four Jet A samples, twelve JP-8 samples, two JPTS sam-
ples, one JP-8+100 sample and one Jet A-1 sample were chosen for
the experiments, which were representative of the distribution of
fuels in the library. All the samples were freshly prepared and mea-
sured following a random block design with time as the blocking
factor. The jet fuel types, sample IDs and available properties are
given in Tables 1 and 2.

2.2. Instrumentation and methods
Five replicates were run for each sample by following an
autosampler sequence generated by random block design. A sol-
vent blank was run before and after each block to validate the lack
of carryover with three cycles of syringe washes before and after
the injection. All experimental data were collected on a Trace-GC
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Table 1
Types, IDs and available properties of the samples used in the comparison of the FF-CI mode with the FN-CI mode.

Sample ID 3528 3998 3752 3488 2851 2829 2882 2885 4198 2993
Fuel type JP-8 Jet A JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 Jet A

D3241 Tube deposit rating, visual 1 1 1 1 <1 1 <1 <1 <2 1
D3241 Change in pressure (mm Hg) 2 0 0 0 0 0 1 0 3 n/a
D5972 Freezing point (◦C) (automatic) −50 −40 −50 −49 −49 −47 −49 −51 −50 −59
D86 IBP (◦C) 171 174 132 156 160 157 148 145 179 n/a
D86 10% recovered (◦C) 189 192 160 182 182 177 175 170 189 n/a
D86 20% recovered (◦C) 195 199 168 190 188 185 183 180 193 n/a
D86 50% recovered (◦C) 210 220 190 209 206 203 203 204 206 n/a
D86 90% recovered (◦C) 239 259 234 240 242 235 237 246 234 n/a
D86 EP (◦C) 257 278 254 259 268 259 260 269 250 n/a
D86 Residue (vol%) 1.3 1.5 1.3 1 1.2 1.3 1.3 1.3 1.3 n/a
D86 Loss (vol%) 0.5 0.2 0.8 0.7 0.5 0.2 0.9 0.6 0.2 n/a
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D381 Existent gum (mg/100 mL) 4 2.4 0.4
D93 Flash point (◦C) 58 60 41
SPEC\F Filtration time (min) 6 9 5
D5452 Particulate (mg/L matter) 0.4 0.6 0.2

000 gas chromatograph (GC) equipped with a Thermo Finnigan
olaris Q quadrupole ion trap mass spectrometer (MS) (Thermo
lectron Corporation, San Francisco, CA, USA) as the detector. The
as chromatograph was also equipped with a TRIPLUS AS autosam-
ler (Thermo Scientific). The Xcalibur software version 1.4 (Thermo
cientific) was used for the instrument control and data collection.
nhanced scan rates were used through modification of the custom
une program through the freely available XDK command package
Thermo Scientific) using Visual Basic 6.0 (Microsoft Corporation,
edmond, Washington, USA). Because of the limited acquisition
ate of the analogue to digital converter, there is a trade-off between
can rate parameter and sampling points per Th: faster scanning
esults in fewer data points per unit Th and therefore poorer mass
esolving power. The scan rate parameter of 0.06 ms/Th offered the
est balance among speed, signal-to-noise ratio improvement, and
ass resolution for the present study.
With an initial set of ten samples (see Table 1) two experimental

odes were evaluated: fast GC separation with fast MS scan (the
F mode), and fast GC with conventional MS scan (the FN mode)
ith the latter as a reference method (FF-CI and FN-CI; both modes
sed chemical ionization (CI)).

A second set of ten samples (see Table 2) was analyzed using
he FF-CI mode for the purpose of validating the procedure. One
atch of aliquots was collected from this second set of samples

nd was analyzed and a second batch of aliquots was collected
nd was analyzed 4 days later. Each set of aliquots was prepared
ndependently.

CI operated under the positive ion mode with isobutane (99.00%,
irgas) as the reagent gas at a flow rate of 0.6 mL/min. The mass

able 2
ypes, IDs and available properties of the samples used in the prediction of unknown sam

Sample ID 4131 3869 3520
Fuel type JP-8 JPTS JP-8

D3241 Tube deposit rating, visual 1 n/a 1
D3241 Change in pressure (mm Hg) 0 1 0
D5972 Freezing point (◦C) (automatic) −54 −56 −57
D86 IBP (◦C) 155 157 147
D86 10% recovered (◦C) 171 165 170
D86 20% recovered (◦C) 180 n/a 176
D86 50% recovered (◦C) 204 179 192
D86 90% recovered (◦C) 245 220 227
D86 EP (◦C) 267 241 253
D86 Residue (vol%) 1.4 1.0 1.2
D86 Loss (vol%) 0.7 0.6 0.6
D381 Existent gum (mg/100 mL) 1.6 0.6 0.2
D93 Flash point (◦C) 48 47 45
SPEC\F Filtration time (min) 5 n/a 5
D5452 Particulate (mg/L matter) 0.8 0.3 0.5
1.4 1.2 3.2 1 4 0.4 n/a
52 52 49 47 48 64 −54

6 4 4 4 4 8 n/a
0.4 0.4 0.5 0.4 0.4 0.4 n/a

scan range was from 60.00 to 425.00 Th for both MS configurations.
The fast GC-normal scan MS was selected as a reference method
because fast GC has already been demonstrated in the literature
for fuel samples [29].

The separation was accomplished with a 0.2 �m film of
polydimethyldiphenyl siloxane (5% phenyl) [DB-5, Agilent Tech-
nologies] wall coated open tubular column with a 5.0 m length and
a 0.10 mm internal diameter. The initial temperature was 50 ◦C and
held for 1 min, increased at a rate of 30 ◦C/min to 220 ◦C, and held
for 1 min at 220 ◦C. A 0.3 min solvent delay was used under the split
mode with a split ratio of 1:20. A flow rate of 1.5 mL/min of carrier
gas helium was maintained by the flow controller. The conditions
of GC and MS for the FF-CI mode are summarized in Table 3.

2.3. Data processing

2.3.1. General information
The data collected by the Xcalibur software version 1.4 (Thermo

Scientific) were imported into and processed with the MATLAB
version R2010a software (The MathWorks Inc., Natick, MA) on a
home-built computer equipped with an Intel Core i7 940 proces-
sor with 12 GB of DDR3 RAM. The operating system was Microsoft
Windows XP x64 Professional SP1.
2.3.2. Data compression
For the purpose of comparison, the data set collected from

samples given in Table 1 was treated with and without wavelet
compression. For the two-dimensional wavelet compression both
retention time (RT) and mass-to-charge ratio dimensions were

ples under the FF-CI mode.

3517 3737 4160 4195 4255 4773 4188
Jet A JP-8+100 JP-8 JPTS Jet A-1 Jet A JP-8

1 <1 <1 n/a <1 1 4
1 1 1 1 1 1 12
−52 −56 −49 −60 −54 −47 −49
n/a 148 153 160 n/a n/a 162
n/a 164 177 167 n/a n/a 181
n/a 170 182 n/a n/a n/a 188
n/a 196 200 179 n/a n/a 206
n/a 243 237 215 n/a n/a 241
n/a 266 260 241 n/a n/a 271
n/a 1.4 1.3 1.0 n/a n/a 1.4
n/a 0.3 0.2 0.2 n/a n/a 0.1
n/a 1.2 1.8 0.8 n/a n/a 20.0
54 44 51 48 55 49 52
n/a 7 7 n/a n/a n/a 7
n/a 0.4 0.6 0.2 n/a n/a 0.9
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Table 3
GC separation and MS scan conditions for the FF-CI mode.

Column DB-5: 5.0 m × 0.10 mm × 0.2 �m

Temperature program Initial 50 ◦C held for 1 min
Ramp 30 ◦C/min
Final 220 ◦C held for 1 min

Instrument analysis time 7.7 min
Injector temperature 250 ◦C
Transfer line temperature 280 ◦C
Carrier gas Helium, 1.5 mL/min
Injection mode Injection volume of 1 �L; split ratio of 20
Scan rate parameter 0.06 ms/Th
Sampling points (SAMP) 11.3/Th
Solvent delay 0.3 min
Mass range 60–425 Th
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Ion source temperature 200 ◦C
Reagent gas Isobutane
Flow rate of reagent gas 0.6 mL/min

ompressed. The data were compressed using Villasenor biorthog-
nal wavelets: first the mass spectral dimension was compressed
nd then the RT dimension was compressed to yield a compression
o 1/16 of the original size. The RT and mass scales were fixed to a
onstant value among the different samples by binning. The result-
ng point spacing for the mass and the RT orders were 0.1 Th and
.01 min, respectively, after the wavelet compression. Each two-
ay data object was normalized to unit vector length.

.3.3. Principal component analysis
Principal component analysis was used to visualize the clus-

ering of the object scores for both the jet fuel properties and the
C/MS data. The data were centered by subtracting the average of

he data objects from each object in the data set prior to calculating
he principal components by singular value decomposition.

.3.4. Projected difference resolution (PDR) metric [27]
For complex data sets, the distribution of objects and classes

annot be accurately assessed by looking at the principal compo-
ent scores, especially when the variance spanned by the first two
omponents is less than 90% as is often the case. Visually assess-
ng 3D plots of principal component scores is always a bad idea
ecause it is not quantitative. As a powerful tool, the PDR quanti-
ative metric was devised that represents separations of clusters in
multidimensional space in the context of chromatographic reso-

ution [27]. The difference vector between two class means of the
bjects is calculated first. Then the objects of the two classes are
rojected onto the difference vector to yield a scalar set of scores.
he projections are used similar to those in the standard chromato-
raphic resolution equation. The stepwise calculations follow. First,
he difference vector between two class means is calculated.

a,b = x̄a − x̄b (1)

or which x̄a and x̄b are the class means and da,b is the difference
ector between x̄b and x̄a. Objects are row vectors.

i = xid
T (2)

or which pi is the inner product of data object xi and the class differ-
nce vector d. The resolution of two classes then can be calculated
ccording to the equation below

s =
∣
∣p̄a − p̄b

∣
∣

2 × (sa + sb)
(3)
or which pa and pb are differences of the averages of the pro-
ections; sa and sb are the standard deviations of the two classes.
s with chromatographic resolution, when the Rs value is larger

han 1.5, the classes are considered resolved. In this work, the PDR
2011) 1260–1268 1263

method was used to evaluate and optimize the data pretreatment
steps.

2.3.5. FuRES and o-PLS classifiers
The class designees were binary encoded. FuRES does not have

an adjustable parameter, such as the component number in PLS,
so it does not require a separate set of data to optimize the model.
For the o-PLS (in-house program) [46] model, the full set of latent
variables was calculated. During prediction, the number of latent
variables that yielded the lowest prediction error as defined by the
predicted residual error sum of squares (PRESS) of each prediction
data set was used to generate the best possible predictions. o-PLS
acts as a positively biased reference method and if an equivalent
or better FuRES prediction result is obtained, the FuRES method is
validated.

Instead of using a single prediction set and a single model, three
Latin partitions and ten bootstraps were used to provide a general-
ized validation of the classifiers. The results of the three prediction
sets from each partition were pooled so that every object was used
one time for prediction and twice for model building. The results
were also used for two-way analysis of variance (ANOVA) compar-
isons between the FuRES and the o-PLS predictions. The prediction
results were averaged across the 10 bootstraps to provide 95% con-
fidence intervals.

2.3.6. Prediction of a novel set of samples
A set of ten new samples was randomly selected from the pool of

200 jet fuels samples. The two sets of samples were run 4 days apart
and designated as batch A for the earlier collection and batch B for
the later collection. These samples were analyzed independently
including the dilution step. Batch A was used for model building and
batch B was used for the prediction. Then the roles of the two sets
of 50 objects were reversed with batch B used for model building
and the batch A used for prediction.

Because RT drift occurred during the 4-day period separating
the data collections retention time alignment was implemented.
The three-way alignment is a standard procedure in our lab and
was used without optimization (i.e., the default parameters of a
single iteration and a third order polynomial was used). The aver-
age two-way image of the GC/MS data is calculated and used as a
target. Each two-way image is aligned by using a third order poly-
nomial to adjust the retention time to maximize the correlation
coefficient of the two-way data object and the two-way average.
The intensities are adjusted using linear interpolation (i.e., interp1
function in MATLAB). For prediction data, each prediction object
was aligned to the two-way mean of the unaligned calibration
data.

3. Results and discussion

3.1. Sample property analysis by hierarchical cluster analysis and
PCA

Because some properties of the sample sets were not avail-
able, only nine samples were used in this assessment. Properties
with units of temperature were evaluated so that distances in the
dendrogram and among the PCA scores are differences in temper-
ature and can be easily assessed. The hierarchical cluster analysis
was conducted by calculating the average linkage distance [47].
The dendrogram obtained from the freezing point, initial boiling

point, 10% recovered boiling point, 20% recovered boiling point,
50% recovered boiling point, 90% recovered boiling point, and end
boiling point of samples 3528, 3998, 3752, 3488, 2851, 2829, 2882,
2885, and 4198 is given in Fig. 1. The principal component scores of
the temperatures of the same sample properties are given in Fig. 2.



1264 X. Sun et al. / Talanta 83 

Fig. 1. Dendrogram of selected properties of samples 3528, 3998, 3752, 3488, 2851,
2829, 2882, 2885 and 4198.

Fig. 2. PCA score plotting of selected properties of samples 3528, 3998, 3752, 3488,
2851, 2829, 2882, 2885 and 4198.

Fig. 3. TIC and average mass spectrum of
(2011) 1260–1268

From both analyses there are differences and similarities among
the properties of fuels with different lot numbers.

3.2. Instrumentation and GC/MS data

Using pentane and a solvent delay of 0.3 min may pose a limi-
tation in that the most volatile components that elute during the
0.3 min solvent delay are not characterized. The solvent delay in
our work was not relevant because the MS scanned a range of
60–425 Th, thus ions below 60 Th generated from the early eluting
compounds would not be detected.

Five replicates for the 10 samples were collected using a random
block design implemented by the autosampler to yield 50 GC/MS
data objects. Each run took 7.7 min, which was one quarter of the
conventional GC/MS separation time. As an example, the total ion
current (TIC) chromatogram and average mass spectrum of sample
2885 are given in Fig. 3. With a short separation time, the chro-
matographic peaks were significantly overlapped so that it would
be difficult to classify the jet fuel samples visually. However, by
representing the data object as a two-way image (see Fig. 4), better
resolution is apparent in the two-way data image although some
peaks are not completely resolved.

3.3. Data compression

Wavelet transformation can provide compression of the ana-
lytical data. As an example, the original size of a two-way data
object of sample 3998 was 4124 × 1349. After biorthogonal Vil-
lasenor wavelet (the Wavelab toolbox) compression was applied to
the RT and mass-to-charge ratio orders, the data size was reduced
to 1031 × 338, which is one sixteenth of the original size. This com-
pression offers the advantages of smaller data size, which will result
in a much shorter computing time while preserving the peaks and
concomitantly improves the signal-to-noise ratio by removing high
frequency noise components. The advantage of the biorthogonal

wavelet compression is that peaks in the compressed data are not
shifted in their location with respect to the retention time and
mass-to-charge ratio orders. However, wavelet compression may
result in signal loss, influencing results such as prediction rates as
discussed in the following sections.

sample 2885 under the FF-CI mode.
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Fig. 4. Two-way data image of sample 2885 under the FF-CI mode reconstructed
with MATLAB.
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ig. 5. The principal component score plotting of data collected with the FF-CI mode
ithout wavelet compression.

.4. PCA results

PCA scores of the data collected under the FF-CI mode were used
o evaluate the clustering of the samples and replicates. The plot
f scores of the two-way objects is given in Fig. 5. The first and

he second principal components (PCs) account for 62% of the total
ariance. The ellipses are the 95% confidence interval around the
eans of each sample. The numbers in the parentheses give the

elative and the absolute variance of the PCs. From the score plot, it
an be concluded that some types of the jet fuel sample clusters are

able 4
rediction and resolution results of FF-CI and FN-CI with and without wavelet compressi

FF-CI

Uncompressed

FuRES prediction rate (%) 99.8 ± 0.5
o-PLS prediction rate (%) 100
Mean of minimum resolution 1.9 ± 0.1
Geometric mean of minimum resolution 8.3 ± 0.5

ote: FF-CI indicates the fast chromatography and fast MS scan under CI ionization; FN-C
esignates a 2 × 2 biorthogonal wavelet compression to 1/16th of the data set size. Precisi
en bootstraps.
2011) 1260–1268 1265

overlapped when projected onto the two PCs; however the clusters
may be resolved in the higher dimensional data space.

3.5. PDR results

Analogous to chromatographic resolution, a PDR resolution of
1.5 is considered baseline separation of two clusters of data in the
multidimensional data space. The minimum average resolutions of
the jet fuel data with 10 bootstraps with and without wavelet com-
pression were 2.3 ± 0.4 and 1.9 ± 0.1, respectively. Because these
values were larger than 1.5, the class boundaries were completely
separated in the multivariate data space. When the confidence
intervals are considered, there was not a significant difference
between these two resolutions. The geometric mean resolutions
with and without wavelet compression respectfully were 6.6 ± 0.1
and 8.3 ± 0.5 and did differ significantly. Values larger than 1.5 indi-
cate that successful classification should be achievable and some
loss of signal is observed with the two-way wavelet compression.

3.6. FuRES and o-PLS classification results

Three Latin partitions with ten bootstraps were used to build
30 FuRES and o-PLS models from randomly selected subsets of
the two-way data objects. For each bootstrap, the data were split
into training and prediction sets by Latin partitions so that each
spectrum was used only once in the prediction set and the same
class distributions were maintained between training and predic-
tion sets. Prior to constructing the classifiers the model-building
data set was compressed using the PCT so that the size was fur-
ther reduced to 34 × 34 or 33 × 33. There were two compressed
sizes because 50 is not a multiple of 3, so the size of the model-
building data set and prediction set varied by unity among the three
partitions. The prediction data set was compressed by projection
onto the same principal components that were calculated from the
training data set.

Two-way ANOVA with interaction was used to compare results
between the o-PLS control method and FuRES. The total run time on
the computer was between 50 and 60 min for each evaluation that
would construct 30 FuRES models and 30 o-PLS models. The three-
way data set with and without wavelet compression was used to
construct the FuRES and o-PLS classification models and to validate
them with bootstrapped Latin partitions.

PDR values and the average prediction rates are reported with
95% confidence intervals for the ten bootstrapped Latin partitions
with and without wavelet compression in Table 4. The minimum
resolution measures the relative separation of the most overlapped
pair of classes or fuel lots in the multivariate data space. The geo-
metric mean of the PDR values gives an overall measure of the

separation of all the combinations of pairs of classes.

For the FN-CI mode, the minimum resolution was 1.7 ± 0.7
before wavelet compression and 0.8 ± 0.2 after wavelet compres-
sion. The PDR measure reveals that compression deleteriously
affected at least one pair of jet fuel lots. The geometric PDR

on.

FN-CI

WL compressed Uncompressed WL compressed

99.8 ± 0.5 97.4 ± 1.0 88 ± 1
100 97.8 ± 0.5 93 ± 2
2.3 ± 0.4 1.7 ± 0.7 0.8 ± 0.2
6.6 ± 0.1 6.0 ± 0.5 2.9 ± 0.1

I indicates the fast chromatography and normal MS scan under CI ionization; WL
on measures for classification and PDR are 95% confidence intervals calculated from
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eans were 6.0 ± 0.5 before wavelet compression and 2.9 ± 0.1
fter the wavelet compression, which also indicates that for this
ase significant amounts of information were lost during wavelet
ompression. For the normal MS scan (FN-CI) mode a significant
ecrease in PDR is observed because there are fewer data points
long the fast chromatographic order and the data are overcom-
ressed with respect to retention time.

For the FF-CI mode, although the minimum PDR values of
.9 ± 0.1 and 2.3 ± 0.4, before and after compression respectively,
id not demonstrate a big difference, the geometric means of
he projected difference resolutions respectively decreased from
.3 ± 0.5 to 6.6 ± 0.1 for before and after compression. The decrease

n PDR indicates characteristic information is lost after the com-
ression for clusters of class objects that are well separated, but
ot enough to cause class overlap and accurate classification should
e expected. Wavelet compression may improve signal-to-noise
atios, which may explain the marginal improvement in the mini-
um resolution.
For the normal MS scan this trend in PDR is also supported by

he lower average prediction rates for FuRES and o-PLS classifi-
ations than those when the data set was uncompressed. For the
N-CI data, classification rates of FuRES and o-PLS were 88 ± 1% and
3 ± 2% with wavelet compression and 97 ± 1 and 97.8 ± 0.5 with-
ut wavelet compression. This substantial decrease in classification
ate caused by wavelet compression indicates that with a fast sep-
ration, the conventional MS scan rate does not adequately resolve
apidly eluting compounds. The insufficient sampling with respect
o retention time results in a further loss of characteristic infor-

ation if the data are compressed as manifested by the worsened
rojected difference resolutions and prediction accuracies.

Alternatively, for the fast MS scan, wavelet compression did
ot exert an effect on the prediction rates for the FuRES classi-
cation (FF-CI with and without wavelet compression were both
9.8 ± 0.5%) and the o-PLS classification of 100% accuracy for both
ith and without wavelet compression. When fast MS scan was

mplemented, more data points were available with respect to
he retention time. Although wavelet compression was used, the
emaining data points still retained enough information to permit
ccurate classification of the samples. Therefore, fast scan MS is
dvantageous and necessary for fast GC separation for the purpose
f classification of these jet fuel samples.

The FuRES classification tree with wavelet compression for the
F-CI mode is given in Fig. 6. In the classification tree, H represents
he classification entropy. The numbers refer to the rule used for
lassification at each branch of the tree. Moving from the root to
he leaves of the tree, the value of entropy decreases because the
umber of multiple classes at each rule is decreased. Nc gives the

umber of objects in each class. The FuRES classification tree has
he most efficient classification structure with nine rules which are
he minimum possible to resolve ten fuel samples.

o-PLS was used as a reference method in this work because it
s positively biased with the latent variables optimized to give the

able 5
onfusion matrix of FuRES classification under the FF-CI mode with wavelet compression

2885 3488 3528 2851 2829

2885 5 0 0 0 0
3488 0 5 0 0 0
3528 0 0 5 0 0
2851 0 0 0 5 0
2829 0 0 0 0 5
4198 0 0 0.1 ± 0.2 0 0
2993 0 0 0 0 0
3998 0 0 0 0 0
2882 0 0 0 0 0
3752 0 0 0 0 0
Fig. 6. FuRES classification tree of jet fuels of data collected under the FF-CI mode.

lowest prediction error for each prediction set. The results of the
FF-CI mode with and without wavelet compression both achieved
99.8 ± 0.5% for FuRES and 100% for the o-PLS. This result demon-
strates the robustness of FuRES classifiers that performed as well
as the positively biased reference method.

The average confusion matrix from the 10 bootstraps for the
FuRES prediction in the FF-CI mode is given in Table 5. The sam-
ple classes correspond to the rows and the predicted classes
correspond to the columns. The average number and confidence
intervals of correct predictions comprise the diagonal elements of
the matrix and the off-diagonal elements are the erroneous pre-
dictions. In Table 5, sample 4198 in one of the 10 bootstraps was
misclassified as sample 3528 by FuRES. Note in Figs. 1 and 2 that
these two lots are similar with respect to jet fuel temperature prop-
erties, so the single misclassification in the confusion matrix hints
that fuels with similar properties are similar in the multivariate
GC × MS data space. A matched sample t-test was used to compare
the FuRES and o-PLS prediction errors in the FF-CI mode with and
without wavelet compression. A t statistic of −1.0 with a probability
of 0.3 was obtained for both with and without wavelet compres-
sion, which indicates no significant difference between these two
methods at a 95% confidence level.

The two-way ANOVA results supported the results from the t-
test for which one way was the comparison between the FuRES
and o-PLS prediction treatments and the other was the effect of the

jet fuel samples. In the FF-CI mode the treatment effect had prob-
abilities of 32% for both with and without wavelet compression,
demonstrating FuRES and o-PLS classifiers giving similar results
without a significant difference for the classification. The sample

.

4198 2993 3998 2882 3752

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
4.9 ± 0.2 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5
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Table 6
Comparison of prediction errors for data collected 4 days apart with and without wavelet compression and retention time alignment.

Prediction error out of 50 samples Batch A model predicts batch B Batch B model predicts batch A

FuRES o-PLS FuRES o-PLS

No alignment
WL compressed 2 3 7 7
Uncompressed 4 3 20 11

Aligned to mean of batch A
WL compressed 0 4 7 6
Uncompressed 0 1 0 4

Aligned to mean of batch B

N set si
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WL compressed 0
Uncompressed 0

ote: WL designates a 2 × 2 biorthogonal wavelet compression to 1/16th of the data
n each data collection batch.

actor was not significant with both probabilities of 48%, indicating
hat the different samples did not result in different classification
ates. Because o-PLS was used as a positively biased control, the
bove results further validate the FuRES classifiers. The success of
uRES is attributed to the robustness of the method and the high
nformation content of the two-way data objects. (For example for
ample 3998 the original dimensions were 5 563 276 with 4124 for
C and 1349 for MS and the data size after compression was 348 478
ith 1031 for GC and 338 for MS.) FuRES affords the opportunity to

lassify jet fuels with a data collection time of about 7 min for each
ample from fast GC and fast scan MS measurements.

.7. Prediction of a novel collection of samples

To validate the robustness of the proposed method, ten new
amples were randomly selected from the library of 200 samples.
he same set of samples used in the previous study was no longer
vailable for further analyses. The GC/MS data of the ten new fuel
ots were collected and analyzed using the FF-CI mode, in two
atches that were separated by a span of 4 days. Data from the ear-

ier collection will henceforth be referred to as batch A, and data
rom the later collection will be referred to as batch B. The dilution
rocedure and time period separating these two batches of samples
dded additional sources of variation. For these studies, the pro-
edure of data collection and classification was implemented with
nly the addition of an unmodified three-way polynomial retention
ime alignment.

Retention time drift is caused by fluctuations in inlet and out-
et pressures, temperature, column degradation, sample size and
ow rate during gas chromatographic measurements. When drift
appens classification and prediction rates will be deleteriously
ffected; retention time alignment is necessary to realign the peaks
n the chromatograms to a standard. This approach used an unsu-
ervised alignment that adjusted the retention time by a cubic
olynomial of each two-way image to the closest correspondence
o the average two-way object.

In the previous study, because the data of fuels were collected
uring the same time period, retention time alignment did not
ffect the classification rates.

The first batch of new samples (A) was used to build a FuRES and
n o-PLS model to predict the latter batch (B) of the new samples.
he roles of the two data sets were reversed with the batch B used
or model building and batch A used for prediction. The numbers
f prediction errors are given in Table 6.
Retention time alignment significantly decreased the number of
rediction errors. Wavelet compression improved the prediction
ccuracies for the unaligned data because the loss in chromato-
raphic resolution can correct drift problems as unaligned peaks
egin to overlap with respect to retention time.
3 4 7
0 0 4

ze. The numbers in the table are prediction errors out for 5 replicates of 10 samples

Two alignments were evaluated: (1) the calibration set was
aligned and then each prediction object was aligned to the mean
of the calibration set; (2) the prediction data were aligned than
each calibration object was aligned to the mean of the predic-
tion set. When the data sets were aligned to the mean of batch
B, the prediction accuracies were improved, which may be a result
of more serious drift within batch A. After compression, for the
data aligned to batch B the prediction errors increased for all the
cases except for one of the FuRES classifications that retained at
100% accuracy.

The three-way alignment as one would expect to improve the
predictions of data collected over a significant time period. These
results demonstrate that the classification procedure works for dif-
ferent sets of fuels by lot number, the classification models were
general for a 4-day period, and independent dilution and data col-
lection did not deleteriously affect the prediction rate as long as
retention time drift was corrected. The FuRES classifiers gave better
or equivalent prediction accuracies as the positively biased o-PLS
classifiers. Perfect prediction was achieved after retention time
alignment for both compressed and uncompressed data with the
batch A classification models.

4. Conclusions

Rapid classification of jet fuels can be realized by using fast GC-
fast QIT MS combined with chemometric methods. The novelty of
this method resides in the application of fast MS as the detection
method for fast GC for the purpose of three-way data collection to
classify jet fuel samples by lot numbers. The pretreatment methods
for data such as compression and retention time alignment have
proved useful and may in some cases improve classification perfor-
mance while reducing the computational load for building models.
Three Latin partitions and ten bootstraps were used to validate the
FuRES model. The FuRES classification with and without wavelet
compression achieved 99.8 ± 0.5% classification accuracy with jet
fuels that are similar with respect to composition and property.
The classification accuracies of FuRES had no significant difference
from those obtained by the positively biased o-PLS control method.
FuRES has the benefit of no adjustable parameters for configuration
that PLS has in regard to the number of latent variables to be used
for the model.

A second study with ten different lot numbers of jet fuel sam-
ples was completed successfully without optimization or changing
any of the instrumental or data processing procedures and param-

eters. Two independent sets of data were collected 4 days apart and
some retention time drift occurred. Routine polynomial three-way
retention time alignment was used without modification. To make
efficient use of the data, the earlier and later collections were each
used for prediction and model building. Besides the incorporation
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f the three-way retention time alignment no other modifications
ere used to the parameters of the procedures.

For these new data sets, 2 × 2 wavelet compression deleteriously
ffected prediction rates. For uncompressed data, FuRES achieved
erfect prediction (100%) for four different models. These results
emonstrate that the proposed method is robust and validated.
ith this novel method, analysis time was reduced with respect

o conventional GC/MS analysis and prediction accuracy improved
ith respect to fast gas chromatography with normal scan mass

pectrometry.
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