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Sources of variance in experimental replicates
The practical limitations of even the most stable mass spectrometers prevent perfectly constant conditions, so replicate spectra always contain variance in their relative ion abundances. To show that uncontrolled changes in instrument conditions, can influence data on timescales of seconds, Figure S3 shows a magnified region of a chromatogram of a cocaine standard collected between casework samples in an operational crime laboratory. When the fragment ion abundances are plotted as raw counts, all the ions of cocaine are strongly correlated (r>0.85), which is a necessary requirement for the successful application of most algorithms involving background-subtraction and peak-deconvolution.1-10 However, after normalization to the base peak at m/z 82, the ions show a range of correlations with one another, from strongly positive (r=0.96) to strongly negative (r=-0.91). Again, the strong correlation with retention time indicates that the variance is closely correlated with a latent time-varying source of variance, such as a drift in pressure. The variance in the normalized abundance at each m/z value in each scan is not independently variable and not randomly variable, as is assumed/required by most comparison algorithms. 
	[image: ]A
B


	Figure S1. Magnified region of 3-dimensional GC-EI-MS data of cocaine to show: A) strong correlations between raw abundances (counts) of several fragments of cocaine as a function of time or scan number; and B) correlations (red-to-red and orange-to-orange), anticorrelations (red-to-orange) and weak/non-correlations (green-to-green) between normalized abundances of the same data in Panel A. Panel B demonstrates that normalized fragment ion abundances are not independently variable, as is often assumed. 

	


	



Figure S2, adapted from Nishimura,11 shows that fragmentation pathways involving molecular rearrangements require specific or ‘tight’ transition states that have lower activation barriers and are favored at the lowest internal energies. Such transitions can be thought of having low barriers and narrow pathways through co-ordinate space, like a narrow fast-flowing channel between two lakes.
	[image: ]

	Figure S2: Schematic visualization of a potential energy hypersurface to highlight the effects of activation energy in the vertical dimension and activation entropy in the horizontal plane on the transition of an activated precursor ion through one reaction co-ordinate to a particular product ion. Fragmentation patterns derive from dozens of such reaction co-ordinates to dozens of product ions in a competitive manner.  



In contrast, direct bond cleavages tend not to be sensitive to conformational requirements, have loose transition states, and tend to be favored at higher internal energies, like a wide slow-flowing river between two lakes.12,13 As the excitation energy rises, the looser transition states can ultimately carry a higher flux or volume of precursor ions to product ions. Figure S2 helps visualize one reaction pathway, but dozens of reaction pathways are often possible for any given precursor ion. Each individual precursor ion will follow its own pathway through multi-coordinate space. 
Table S1 shows the arbitrary values selected for the kinetic modeling example in Figure 2. The rates shown below are for an arbitrary time of 300 ns.
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Figure S3. Plot of the first two principal components from PCA analysis of the fragment ion abundances of the 20 most abundant fragments in a database of 128 cocaine spectra from Lab 1 as the training set. PC2 correlates most strongly (and negatively) with the abundance of ions at m/z 182 and greater. Lab #1 usually has m/z 82 as the base peak and Lab #2 usually has m/z 182 as the base peak, which explains why the spectra from lab #2 fall so far outside the variance explained by the training set. Ecgonine methyl ester lacks many of the high mass ions of cocaine, which explains the positive displacement in the PC2 axis relative to cocaine. 





Table S2. Significance of the coefficients in Table 2 (1-tailed).

	Dependent m/z value
	Unstandardized coefficients for covariate m/z values 

	
	42
	51
	55
	67
	68
	77
	81
	82
	83
	94
	96
	97
	105
	122
	152
	182
	183
	198
	272
	303

	42
	.
	<.001
	<.001
	<.001
	<.001
	<.001
	.325
	.050
	.032
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001
	<.001

	51
	.000
	.
	.000
	.000
	.000
	.000
	.480
	.061
	.204
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	55
	.000
	.000
	.
	.000
	.000
	.000
	.408
	.027
	.129
	.000
	.000
	.000
	.000
	.000
	.001
	.000
	.000
	.007
	.000
	.000

	67
	.000
	.000
	.000
	.
	.000
	.000
	.001
	.001
	.286
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.002
	.000
	.000

	68
	.000
	.000
	.000
	.000
	.
	.000
	.007
	.001
	.054
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	77
	.000
	.000
	.000
	.000
	.000
	.
	.019
	.010
	.298
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	81
	.325
	.480
	.408
	.001
	.007
	.019
	.
	.000
	.000
	.008
	.002
	.100
	.044
	.062
	.319
	.189
	.191
	.029
	.010
	.005

	82
	.050
	.061
	.027
	.001
	.001
	.010
	.000
	.
	.000
	.062
	.028
	.056
	.050
	.215
	.084
	.001
	.001
	.000
	.000
	.000

	83
	.032
	.204
	.129
	.286
	.054
	.298
	.000
	.000
	.
	.155
	.000
	.000
	.296
	.361
	.295
	.324
	.284
	.209
	.057
	.036

	94
	.000
	.000
	.000
	.000
	.000
	.000
	.008
	.062
	.155
	.
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	96
	.000
	.000
	.000
	.000
	.000
	.000
	.002
	.028
	.000
	.000
	.
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	97
	.000
	.000
	.000
	.000
	.000
	.000
	.100
	.056
	.000
	.000
	.000
	.
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	105
	.000
	.000
	.000
	.000
	.000
	.000
	.044
	.050
	.296
	.000
	.000
	.000
	.
	.000
	.000
	.000
	.000
	.000
	.000
	.000

	122
	.000
	.000
	.000
	.000
	.000
	.000
	.062
	.215
	.361
	.000
	.000
	.000
	.000
	.
	.000
	.000
	.000
	.000
	.000
	.000

	152
	.000
	.000
	.001
	.000
	.000
	.000
	.319
	.084
	.295
	.000
	.000
	.000
	.000
	.000
	.
	.000
	.000
	.000
	.000
	.000

	182
	.000
	.000
	.000
	.000
	.000
	.000
	.189
	.001
	.324
	.000
	.000
	.000
	.000
	.000
	.000
	.
	.000
	.000
	.000
	.000

	183
	.000
	.000
	.000
	.000
	.000
	.000
	.191
	.001
	.284
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.
	.000
	.000
	.000

	198
	.001
	.000
	.007
	.002
	.000
	.000
	.029
	.000
	.209
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.
	.000
	.000

	272
	.000
	.000
	.000
	.000
	.000
	.000
	.010
	.000
	.057
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.
	.000

	303
	.000
	.000
	.000
	.000
	.000
	.000
	.005
	.000
	.036
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.000
	.
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[image: ]Figure S4. Bivariate plot of the measured abundance of m/z 68 versus the predicted abundance of m/z 68 for various drugs. The general linear model was built on a training set of 128 cocaine spectra from Lab 1 and applied to 175 validation spectra of cocaine, 10 diastereomer replicates (known negatives) and 706 additional known negative spectra. [image: ]
Figure S5. Bivariate plot of the measured abundance of m/z 105 versus the predicted abundance of m/z 105 for various drugs. The general linear model was built on a training set of 128 cocaine spectra from Lab 1 and applied to 175 validation spectra of cocaine, 10 diastereomer replicates (known negatives) and 706 additional known negative spectra. 
[image: ][image: ]
Figure S6. Bivariate plot of the measured abundance of m/z 122 versus the predicted abundance of m/z 122 for various drugs. The general linear model was built on a training set of 128 cocaine spectra from Lab 1 and applied to 175 validation spectra of cocaine, 10 diastereomer replicates (known negatives) and 706 additional known negative spectra. 

[image: ]
Figure S7. Bivariate plot of the measured abundance of m/z 152 versus the predicted abundance of m/z 152 for various drugs. The general linear model was built on a training set of 128 cocaine spectra from Lab 1 and applied to 175 validation spectra of cocaine, 10 diastereomer replicates (known negatives) and 706 additional known negative spectra. 
[image: ]
Figure S8. Bivariate plot of the measured abundance of m/z 303 versus the predicted abundance of m/z 303 for various drugs. The general linear model was built on a training set of 128 cocaine spectra from Lab 1 and applied to 175 validation spectra of cocaine, 10 diastereomer replicates (known negatives) and 706 additional known negative spectra.
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Figure S9. Box and whisker plots of the measured normalized abundance of m/z 182 (A) and m/z 94 (B) for different sets of drugs.




Table S3. Summary statistics for 20 ion abundances of different groups of compounds.
[image: Table
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Property M’ (ABC) AB' : o cD* A’ B c
Relative rates 1.0 2.1 29 0.3 0.6 0.8
Diss. Rate (AU, Kassel) 53.3 17.0 36.3 49.4 5.7 11.0 13.6
Activation energy (E,) 1.6 2.1 24 2.25 2.7 3
Frequency factor (v) 50 150 250 50 150 250
# Atoms 70 55 45 35 30 25 20

n (vib. DOF 203 158 128 98 83 68 53
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Activation energy (E

0

) 1.6 2.1 2.4 2.25 2.7 3

Frequency factor (v) 50 150 250 50 150 250

# Atoms 70 55 45 35 30 25 20

n (vib. DOF) 203 158 128 98 83 68 53


image4.tiff
Component Score Coefficient Matrix*

Component
1 2 3 4
mz42 071 081 -340 176
mz51 075 .081 036
mzss 063 .080 184
mz67 075 118 -.191
mz68 079 109 -.195
mz77 082 .089 -.280
mz81 008 175 134
mz82 000 246 131
mz83 008 143 222 498
mz94 088 055 123 -193
mz96 089 122 077
mz97 088 016 213
mz105 086 s 252
mz122 076 091 -.075
mz182 083 095 128
mz183 .080 102 159
mz198 069 098 .108
mz272 071 021 076
mz303 073 165 -005 .040

Extraction Method: Principal Component Anaiysis.
Component Scores.®

a. Only cases for which DrugNum = 2 are used
in the analysis phase.
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Report

set# 4 mz42 | mzS1  mzSS | mz67 | mz68  mz77 | mz8l | mzB2 | mz83  mz94  mz96 | mz97  mzlos  mzl22 | mzIS2  mz182  mzl83  mzl98  mz272 | mz303
Cocaine wraining Mean 1646 931  5.80 552 621 5064 1094 9969 3990  47.05 2950 1354 4521 921 362 7060 798  7.19 488 1202
N 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
Sd.Deviaton  7.11 378 167 86 o1 1207 53 242 177 se1 270 167 846 110 54 1459 170 14l 181 548
Cocaine validation Mean 1650 819  5.84 458 479  3L17  lods 9101 3542 3412 2516 1162 3070 881 423 8843 1010 1059 838 2134
N 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175
Sd.Deviaton  4.80 211 148 116 o1 504 191 1265 563 519 340 187 374 125 87 1524 157 214 314 970
Negatives; Mean 1481 500 490 293 3.4 2328 629 9690 3731 1838 2210 927 2101 712 986 7270 753 959 421  12.85
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Sid. Deviaton  7.43  2.87 85 178 93 652 456 826 490 715 322  1ss 54l 119 437 1606 169 3.9 139 434
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