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ABSTRACT: This study aims to resolve one of the longest-standing problems in mass spectrometry, which is how to accurately
identify an organic substance from its mass spectrum when a spectrum of the suspected substance has not been analyzed
contemporaneously on the same instrument. Part one of this two-part report describes how Rice−Ramsperger−Kassel−Marcus
(RRKM) theory predicts that many branching ratios in replicate electron−ionization mass spectra will provide approximately linear
correlations when analysis conditions change within or between instruments. Here, proof-of-concept general linear modeling is based
on the 20 most abundant fragments in a database of 128 training spectra of cocaine collected over 6 months in an operational crime
laboratory. The statistical validity of the approach is confirmed through both analysis of variance (ANOVA) of the regression models
and assessment of the distributions of the residuals of the models. General linear modeling models typically explain more than 90%
of the variance in normalized abundances. When the linear models from the training set are applied to 175 additional known positive
cocaine spectra from more than 20 different laboratories, the linear models enabled ion abundances to be predicted with an accuracy
of <2% relative to the base peak, even though the measured abundances vary by more than 30%. The same models were also applied
to 716 known negative spectra, including the diastereomers of cocaine: allococaine, pseudococaine, and pseudoallococaine, and the
residual errors were larger for the known negatives than for known positives. The second part of the manuscript describes how
general linear regression modeling can serve as the basis for binary classification and reliable identification of cocaine from its
diastereomers and all other known negatives.
KEYWORDS: spectral comparisons, spectral algorithm, search algorithm, forensic science, compound identification, binary classification,
drug identification

■ INTRODUCTION

Since its first demonstration in the late 1930s,1 electron
ionization (neé impact) mass spectrometry (EI-MS) has proven
to be a powerful tool for identifying organic substances.2−4More
than 80 years since its introduction, EI-MS in the form of gas
chromatography−mass spectrometry (GC-MS) continues to be
one of the most commonly employed methods of compound
identification in forensic science,5,6 metabolomics,7,8 flavor and
fragrance,5 toxicology,9 and pharmacology.10 Given that there
are now more than 300,000 compounds in the latest EI-MS

database from NIST, computerized approaches to compound

identification have long been a necessity.11−16
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Ignoring the importance of GC retention times for a moment,
the most common approach to identifying a substance from its
mass spectrum is by performing a library search, using either the
apex spectrum of a GC peak or the average spectrum across a
GC peak. Library search algorithms then compare the presence
and abundance of peaks in the questioned mass spectrum (the
unknown) to those in known exemplar spectra of reference
samples in a database. Depending on the database vendor and
the algorithm employed, the software typically returns a list of
the top 10 closest matches with some measure of spectral
similarity assigned to each pairwise comparison between the
questioned spectrum and the reference spectra.17,18

Once a best candidate is chosen, an analyst, such as a seized
drug analyst, is usually required to manually compare the
unknown and reference spectra. Organizations such as the
World Anti-Doping Agency (WADA), UnitedNationsOffice on
Drugs and Crime (UNODC), and the American Society for
Testing and Materials (ASTM) all provide acceptance criteria
that analysts are expected to use when evaluating the peak
abundances of a questioned sample relative to those of a
reference spectrum.19−25 These acceptance criteria generally
permit the abundances of peaks in the questioned spectrum to
fall within ±20% of their respective abundances in the reference
spectrum,19−25 although agencies vary in their stringencies.26,27

These acceptance criteria are generally in agreement with typical
uncertainties observed in replicate spectra of standards collected
in crime laboratories.28

The use of spectral libraries is complicated by the fact that
spectra derive from various types of mass analyzers, and the
spectra vary in their quality, the presence of background ions,
and the occurrence of mass bias.29 Furthermore, instruments
have different geometries, operating conditions, and other
idiosyncrasies that contribute to the overall variance in ion
abundances of replicate spectra.15,28,30 The choice of tuning
algorithm and tuning frequency also plays a role in the variability
of replicate spectra.31 These differences within and between
instruments have deleteriously affected the ability of algorithms
to rank or identify substances correctly.12,13,15,17,18,32−36 All of
these factors negatively affect the ability of current algorithms to
make true positive identifications, even when a reference
spectrum of the questioned substance is present in the database.
For example, most algorithms typically only provide around 80%
accuracy in ranking the correct identity in the #1 posi-
tion.13,37−44 For reasons that will become apparent later, the
inclusion of replicate spectra of each substance can significantly
improve identification rates.12,45,46

Various methods have been developed to improve the
confidence in substance identification using spectral comparison
techniques, such as changing the weighting factors,40,41,43,44,47

changing the peak selection or abundance-normalization
method,37,48 modifying the results based on experimental
information after the spectrum has already been collected,49

and increasing the size of the library.12 Other improvements
include the use of partial and semipartial correlations50 and
wavelet and Fourier transformations to increase the accuracy of
the identification algorithms.51

Given the breadth of potential applications and the varying
weight of false positives and false negatives in different
applications, there is no consensus as to which approach, or
algorithm, is “best”. Therefore, analysts must select an approach
that is simply the best fit for their purpose.10,12,18 As indicated
earlier, the most common approach to improving the success
rate of mass spectral identifications is to combine the mass

spectral information with independent information, such as the
retention time or retention index.7,8,40,49,52−59 However, if the
unknown material has not or cannot be analyzed on the same
instrument, the database retention times/indices may not be
sufficiently reliable to enable the differentiation of structurally
similar compounds. In cases involving coelution, chromato-
graphic peaks can be deconvoluted from each other and/or from
background ions and thereby increase the success of mass
spectral identifications.49,50,55,60−62

■ THE RANDOM AND NONRANDOM VARIANCE OF
REPLICATE SPECTRA

One aspect of spectral comparison algorithms that is often
overlooked is the assumption, and oftentimes mathematical
requirement, that any variance in the relative abundance of peaks
within a replicate spectrum is randomly or independently
variable at each m/z value.48,63 Such a mathematical require-
ment has been assumed since the first use of computational
approaches to background-subtraction64 or spectral deconvolu-
tion into discrete component spectra,60,65,66 whether using
simultaneous linear equations65 or matrix theory.67,68 By default,
deconvolution algorithms explicitly assume unit correlation
among the absolute signals of fragments as a function of time, or
scan number, and they implicitly assume that any unexplained
variance in a given scan at a specific m/z value is
random.49,50,55,60,61,65,67−70 Furthermore, to have statistical
validity, most measures of spectral similarity and dissimilarity
between questioned and reference spectra also require
independent variance, i.e., no correlation, in the relative
abundance at each m/z value within replicate spectra.15,37,71

As an example of this reliance, a recent and extremely effective
approach to spectral comparisons uses combined unequal
variance t-tests at each m/z value to compare questioned and
known spectra. Combining the results of independent t-tests
explicitly requires independent variability of each t-test to enable
the computation of random match probabilities.72−74 However,
as indicated elsewhere,28 and as we will show below, replicate
spectra still contain strong correlations in the normalized
abundances of peaks, so the different m/z values are not
independently variable. Supplemental Figure S1 supports this
contention by showing obvious correlations and anticorrelations
in the normalized abundances of certain fragments of cocaine
across a chromatographic peak.

■ THE VALUE OF CROSS-CORRELATIONS IN
REPLICATE SPECTRA

In the 1960s, Crawford and Morrison noted that systematic
differences in fragmentation patterns occur when a mass
spectrum of a substance was collected by sweeping the magnetic
field instead of the ion acceleration voltage of a magnetic sector
instrument.75 In 1979, van Marlen et al. also noted that the
abundances of peaks in replicate spectra were not independently
variable and that when spectra deviate from a reference
spectrum, it was “virtually impossible to take the correlations
between the errors for the different m/e (sic) values into
account”.48 Here, an “error” is the deviate abundance at onem/z
value between a questioned peak abundance and a reference
peak abundance.

The difficulty in accounting for correlations between residuals
has caused almost all search algorithms since then to assume that
peak abundances in replicate spectra are independently
variable,76 including the traditional and popular peptide-scoring
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algorithms based on tandem mass spectra of protonated
precursors.36,77−81 However, by considering correlations
between theoretical and measured fragment ions in tandem
mass spectra of peptides, Fu et al. were able to reduce the peptide
mismatch rate from their tandem mass spectra by as much as
10%.82 Of course, such approaches are only possible when the
sequence is known for a precursor ion and the theoretical
fragment ions can be accurately predicted. Driver et al. also used
covariance analysis between fragments in replicate spectra to
improve the selectivity of their peptide identification algorithm,
and they also demonstrated the ability to identify mechanistic
relationships between fragment-fragment pairs, such as com-
plementary b/y fragments or consecutive fragments, like the loss
of CO from a b ion to form a corresponding a ion. Related to the
present study, their covariance mapping was conducted on
simple replicate spectra that were collected without deliberate
variance in the magnitude or mechanism of perturbation.83−86

Zhang’s group showed that partial and semipartial correlations
could reduce the false discovery rate of library searches of EI
spectra by a few percent.50 Therefore, the ability to incorporate
cross-correlations of replicate spectra into mass spectral
comparison algorithms is a demonstrated mechanism to
improve their performance.

Mass bias and spectral tilting can be thought of as m/z-
dependent correlations in which low mass ions correlate with
one another, high mass ions correlate with one another, but low
mass and high mass ions anticorrelate with one another.
McLafferty’s group and Dromey have both shown that by
incorporating correction terms, or scaling terms, to account for
mass bias in replicate spectra, the unexplained variance in
replicate peak abundances can be reduced by as much as 40%,
and the reliability of search algorithms can be increased by as
much as 10%.11,87,88 As shown below, our expert algorithm for
substance identification (EASI) naturally accounts for correla-
tions between peaks that derive from mass bias and spectral
tilting.

■ MULTIVARIATE METHODS
By design, multivariate methods of spectral comparisons tend to
account for the covariance or correlations between ion
abundances in replicate spectra. Sigman and Clark examined
the two-dimensional cross-correlations in replicate spectra of
high explosives,89 but the cross-correlations were examined as a
function of a deliberate perturbation, i.e., differing collision
energies, and the cross-correlations were not used to support
compound identification, unlike the present work. In mass
spectrometry applications, principal component analysis (PCA)
has been used in two main ways: (1) to resolve or deconvolute
mass spectra of mixtures,66,68,70,90 and (2) to relate a spectrum
to other classes or structures within a database.74,91−96 The latter
approach has also been used in conjunction with discriminant
analysis and binary classification algorithms to enable the
classification of spectra to known identities.97−107 Finally,
machine learning and artificial intelligence methods have existed
since the early 1970s,108 and they continue to be explored as
methods to both identify known compounds in a library and to
propose structures for compounds that are not in a
library.47,57,78,79,109−115 Whereas the predictive power of
sophisticated computational techniques is likely to continually
advance, very few of the articles described so far tackle the
difficult problem of discriminating between spectrally similar
compounds collected on different instruments and without
reference spectra from those instruments.

The ability to resolve spectrally and structurally similar
compounds, like isomers, using their EI-MS spectra has
traditionally relied on the knowledge that certain ions are
spectrally more unique or more valuable for discriminating
isomers than others. For example, strongly correlating ions are
thought to provide near-constant ratios of abundances that can
be used to help discriminate between structurally similar
compounds like positional isomers94,99 and cocaine diaster-
eomers.116−118 Indeed, in the 1960s Tal’roze and Raznikov
showed that if the correct ion ratios are taken into account, just
three or four pairs of ratios are enough to resolve hundreds of
compounds successfully.119,120 In the case of cocaine, although
the GC retention times can usually resolve the four major
diastereomers of allococaine, cocaine, pseudococaine, and
pseudoallococaine, mass spectral differentiation of the diaster-
eomers within an instrument has been proposed through the
ratios of peak abundances atm/z 94:96 andm/z 152:150.116−118

However, the tactic of finding and examining specific pairs of
ions to differentiate isomers of drugs94,99 is a time-consuming
approach that is not readily scalable to all isomers of all drugs or
compounds. Analysts need an objective algorithm that is
sufficiently flexible in identifying the ion ratios or correlations
that are most characteristic or most discriminating for each
substance without human intervention.

■ EXPERT ALGORITHM FOR SUBSTANCE
IDENTIFICATION

We propose a new paradigm for mass spectral identification that
does not require spectral similarity between the questioned
spectrum and any of the reference spectra of the same substance
to make a reliable identification. The described approach follows
several guiding philosophies of valid computational methods,78

including that (1) it be rooted in a solid scientific/mathematical
basis, (2) it should have as few user-definable parameters as
possible, (3) if possible, parameters should be learned from the
data, and (4) if user-definable parameters are unavoidable, there
should be very clear instructions on how to set these parameters
depending on the experimental setup. As we will show, EASI can
correctly discriminate known positives and known negatives
even when known negatives are more similar to an exemplar or
consensus spectrum121 than other known positives, and EASI
outperforms other algorithms even when data are collected on
different types of mass analyzers. In this first demonstration, we
show that EASI can reliably resolve a drug like cocaine from its
diastereomers, even in the absence of chromatographic
information.

The foundational basis and proof-of-concept of EASI is
described in two parts. Part 1, here, describes how the kinetics of
unimolecular fragmentation can be empirically modeled in a
retrospective and passive manner from any existing database of
replicate spectra of a reference material. Such replicates already
exist in most crime laboratory settings because most
jurisdictions already require spectra of standards to be collected
contemporaneously with casework samples. Part 1 also describes
how to assess and use the correlated variance in the replicates to
build empirical models with which to compare the measured
values. In part 2, the spectral similarity between modeled ion
abundances and measured ion abundances is assessed in a
variety of ways to enable binary classification using receiver
operating characteristic (ROC) curves13,34,122,123 to discrim-
inate between cocaine and its diastereomers, selectively and
confidently, and even when the spectra were collected decades
apart and on a variety of different types of mass spectrometers.
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Because almost all the questioned spectra of cocaine can be
resolved from those of its diastereomers, which are the most
likely to cause false positives, we assume the questioned cocaine
spectra can easily be discriminated from all other known
negatives. Such verification and validation is easily supported by
conventional algorithms.

■ MATERIALS AND METHODS
A drug standard mixture analyzed by Laboratory 1 contained
methamphetamine (1500 ppm), cocaine (1500 ppm), and
hydromorphone (2000 ppm). Methamphetamine and hydro-
morphone were supplied by Sigma-Aldrich (St. Louis, MO,
USA), cocaine was supplied by Mallinckrodt (St. Louis, MO,
USA), and the methanol solvent was supplied by Alfa Aesar
(Haverhill, MA, USA). The drug standard mixture analyzed by
Laboratory 2 was comprised of ecgonine methyl ester (5050
ppm), cocaine (5050 ppm), 6-monoacetylmorphine (6-MAM)
(5700 ppm), diacetylmorphine (DAM) (5700 ppm), and
fentanyl (5200 ppm). The ecgonine methyl ester and cocaine
were supplied by Sigma-Aldrich, the 6-MAM, DAM, and
fentanyl were supplied by Lipomed (Cambridge, MA, USA),
and the methanol solvent was supplied by Fisher Scientific
(Waltham, MA, USA). The training set and test set are
composed of data from abundant chromatographic peaks, so
they represent somewhat ideal conditions that will not always be
realized in casework. Future work, currently in progress, will
consider the influence of absolute signal intensity on the
performance of EASI.

An Agilent Technologies 7890 GC-5977 MS with a 12 m ×
200 μm × 0.33 μm HP-5 (5% phenyl-methylpolysiloxane)
column (Agilent J&W Columns, Santa Clara, CA, USA) was
used by Laboratory 1. The GCmethod involved a 1 μL injection
volume into a 220 °C injection port and a 100:1 split ratio. The
initial oven temperature was held at 80 °C for 1.5 min, before
being ramped to 270 °C at 50 °C/min and then held for 1.67
min. The method also included a second ramp to 290 °C with a
35 °C/min ramp rate and a 2.7 min hold. Heliumwas used as the
carrier gas with a 1 mL/min flow rate. The transfer line
temperature was set to 290 °C. The mass spectrometer scan

range wasm/z 30−650, with a 0.80 min solvent delay and a scan
rate of 2852 Da/sec. The EI source temperature was 230 °C and
the quadrupole temperature was 150 °C.

Laboratory 2 also used an Agilent Technologies 7890 GC-
5977MS; however, Lab 2 used a 30 m × 250 μm × 0.25 μmDB-
5MS (5% phenyl-methylpolysiloxane) column (Agilent J&W
Columns). The GC-MS method included a 0.2 μL injection
volume into a 280 °C injection port and a 20:1 split ratio. The
initial oven temperature was 80 °C, which was ramped to 300 °C
with 30 °C/min ramp rate and then held for 9 min. The helium
carrier gas was set to a flow rate of 0.684 mL/min. The transfer
line temperature was set to 280 °C. The mass spectrometer scan
range was m/z 40−500, with a 2 min solvent delay and a scan
rate of 1472 Da/s. The EI source temperature was 230 °C and
the quadrupole temperature was 150 °C. Most of the replicate
spectra of cocaine and its diastereomers from the NIST archive
come from a select number of laboratories dating back to the
1980s, including the NYC Police Laboratory (P. Shah), the
NIST MS Data Center, the Defense and Civil Institute for
Environmental Medicine, Canada (J. Zamecnik), the Georgia
Bureau of Investigation (P. Price), and the Virginia Department
of Forensic Science. Additional laboratory sources for cocaine
spectra in the SWGDRUG database are provided on the
SWGDRUG website.124 Specific instruments and operating
conditions of the database spectra are not known to us.

■ RESULTS AND DISCUSSION
Kinetic Basis for General Linear Modeling. When a

particular organic molecule is ionized using electron- or
photoionization, the observed branching ratios, that is, the
abundance of peaks in the resulting mass spectrum, is
determined by four main factors:125−127 (1) the internal energy
distribution of the molecule prior to ionization, (2) the
excitation energy distribution accompanying ionization, (3)
the apparent reaction time or observation time that is specific to
the apparatus, and (4) mass bias and spectral distortion caused
by ion optics and instrument conditions.88,128 Branching ratios
may be further affected by collisions between activated ions and
residual gases en route to detection.

Figure 1. Schematic visualization of different potential energy pathways down an energy landscape. Tight transitions states can be thought of as narrow
paths that take time to traverse and tend to involve rearrangements. Loose transition states can be thought of as wide-open pathways falling sharply off
the mountain; they are faster and more numerous but can only be accessed from higher states.
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The relationship between the internal energy distribution of
an activated ion and the branching ratios of its product ions can
be explained by classical statistical models such as the quasi-

equilibrium theory (QET)127 or the Rice−Ramsperger−
Kassel−Marcus (RRKM) theory of unimolecular dissocia-
tion.127,129−133 These theories pose that the reaction rate of a

Figure 2.Theoretical modeling to show how changes in fractional ion abundances as a function of internal energy and observation time can be linearly
extrapolated between instruments: (A) modeled system and relative rates of fragmentation at the vertical dashed line in each panel; (B) modeled
log(kdiss) versus internal energy at a fixed reaction time; (C) breakdown curves as a function of time at a fixed internal energy; (D) breakdown curves as
a function of internal energy at fixed time; (E) ion abundances versus the abundance of C+ over the range of times in panel C; and (F) ion abundances
versus the abundance of C+ over the range of internal energies in panel D. One grid width in Figures B, C, and D spans a 33% increase in internal energy
and 50% increase in reaction time relative to the dashed line for the conditions in panel A.
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particular pathway is determined by the entropy and enthalpy of
activation of the transition state,129,134,135 and they are
sufficiently reliable to enable EI fragmentation patterns to be
accurately modeled and reasonably well predicted from first
principles.127,136 Bauer and Grimme provide an excellent
account of the rich history in this area.136

One way to appreciate the mathematical relationship between
the dissociation rate and the density of transition states is
through the Kassel equation,137,138 which shares general trends
with the more-sophisticated QET and RRKM theories but is
easier to understand.125,135 The flow of different ions through
multicoordinate transition space can be thought of as a precursor
ion having many different pathways down a molecular
landscape, as shown in Figure 1. In this analogy, certain
elevations, and therefore certain pathways, are not accessible if
the excitation energy is too low that the precursor can only
ascend part-way up the mountain.

The Kassel equation (eq 1) assumes that the rate of a reaction
as a function of energy k(E) is the product of the frequency
factor of a certain energy level and the probability of populating
the energy level:

=k E v
E E

E
( )

N
0

3 7i
k
jjj y

{
zzz (1)

where v is an entropic factor or frequency factor, proportional to
e E kT/0 , that describes the tightness of the transition state. The

term ( )E E
E

0 describes the fractional probability of populating
an energy level E above the critical energy E0. As the internal

energy of the precursor ion increases, the fraction ( )E E
E

0

approaches unity. The term N is the number of atoms in the
precursor, so the power term 3N− 7 is the number of vibrational
degrees of freedom in a nonlinear precursor (not including the
reaction co-ordinate).

A schematic visualization of Kassel’s equation is shown in a
potential energy hypersurface in Supplemental Figure S2.
Kassel’s equation explains how the dissociation rate of a reaction
increases when the entropy is more favorable, when the
activation energy increases, or when the number of atoms is
smaller. The corollary is that larger ions require larger internal
energies to observe even the lowest energy rearrangements, a
phenomenon which has hindered the effectiveness of CID of
high-mass ions in top-down proteomics.139−141

When millions of activated precursor ions are formed in an EI
source at any given instant, they start with a distribution of
internal energies, or elevations up the mountain. Ions can either
follow loose transitions, represented by steep, fast, and
unspecific pathways down the mountain, or tight transitions,
represented by less steep, slower, and specific pathways down
the mountain. The ions end their paths with frequencies of
occurrence in proportion to their statistical probabilities. At
short observation times, the only fragments that can be observed
are those that transition through fast or loose transition states. At
longer observation times, fragments occurring through longer or
tighter transition states become more prominent. Below, we
illustrate how these basic principles of QET/RRKM transition
state theory lead to approximately linear fragment-fragment
correlations that can be effectively fitted with general linear
models to extrapolate the kinetic-based behavior between
instruments. To be clear, QET/RRKM theory does not result
in a mathematically rigorous proof of linear branching ratios.

Instead, basic modeling is used to show that when the activation
energy vastly exceeds the appearance energies of the different
pathways, then modest changes of ∼30% in the internal energy
or 50% in the reaction time will provide some approximately
linear relationships between at least several pairs of ions. In
practice, the method of mixed stepwise selection of general
linear modeling can effectively identify and employ the ions that
best correlate with one another among the replicate spectra to
build the general linear models (GLMs). Neither human
selection nor knowledge about the structural relationship
between different ions is required for successful implementation
of EASI.
Simulated Kinetics and Branching Patterns. Consider a

precursor molecular ion M+ with the generic structure ABCD+.
QET/RRKM theory can apply to both odd- and even-electron
ions, so a radical is not shown for simplicity. Figure 2 shows a
hypothetical branching pattern of a simple molecule that
includes both competitive and sequential fragmentations. For
simplicity, the modeled rates have been normalized to the rate of
kAB at a given arbitrary internal energy (Eint) and observation
time (t), as provided in Figure 2A. The modeling is based on a
hypothetical precursor with 70 atoms, arbitrary activation
energies between 1.6 and 3 eV and arbitrary frequency factors.
The modeling further assumes that the internal energy of a
precursor is distributed between the free energy of the pathway
and the internal energy of the fragment ions. The fractional ion
abundances (assuming [M+]t=0 = 1) as a function of time (t)
were derived from a combination of branching rates and
consecutive rates according to the following exam-
ples:125,134−136

[ ] =+M et
k ttot (2)

where ktot = kAB+ kBC+ kCD.
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Figure 2A shows the modeled fragmentation pathway and
Figure 2B shows the rate of change of log(kdiss) versus internal
energy Eint for the different pathways. The fragments in the key
are listed in ascending order of activation energy and descending
order of tightness of the transition state. Therefore, AB+ is the
lowest energy rearrangement product and is observed at the
lowest appearance energies.134,135

In Figure 2C−F, the fragment C+ has the highest appearance
potential but the loosest transition state, so its rate increases
more quickly with internal energy than the other pathways. The
regions labeled “Lab 1” indicate a hypothetical range of
measurements observed by one laboratory based on the variance
in their data, which is characterized by the specific geometry of
the lab’s instrument, the type of mass spectrometer, and their
specific operating conditions. If Lab 2 uses a different geometry
of instrument, such as from a different vendor, or uses different
operating conditions, then the relative ion abundances observed
in Lab 2 will differ from Lab 1 because of the different internal
energies and observational timeframes of fragmentation. For
example, in Figure 2C, the mean fractional abundance in Lab 1
for the fragment B+ is 0.270 ± 0.015% (95% confidence interval)
and in Lab 2, the mean fractional abundance is 0.245 ± 0.015%
(95% confidence interval). A Student’s t-test could easily show
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that the abundance of B+ is significantly different at p < 0.05, and
any “good” algorithm that requires spectral similarity as a modus
operandi should find most replicates from Lab 2 are significantly
different frommost replicates of Lab 1. Other fragment ions may
also be significantly different between the two laboratories.
These differences between instruments are limiting factors in the
effectiveness of algorithms that use spectral similarity as a
mechanism for compound identification.

In contrast to spectral similarity methods that are typically
used to identify substances,13,37,42,71 the linear regression lines in
Figure 2E,F indicate that the linear regression equations for Lab
1’s data can be extrapolated to predict ion abundances in regions
of experimental space that are beyond the natural variance

captured in Lab 1’s data. In other words, Lab 1 could extrapolate
the trend in its data to predict ion abundances for data collected
in Lab 2. Such capabilities are generally not possible when the
variance within a training set does not capture the variance of the
test or validation set, as demonstrated by the PCA plot in
Supplemental Figure S3.

For an analyst in Lab 1 to make accurate predictions about
fragment ion abundances in a spectrum of M+ in Lab 2, Lab 1
would only need to know the values of the covariate ion
abundances (i.e., a measured spectrum from Lab 2) and the
coefficients derived from the various regression models. Lab 1
would not need to know the source of the variance nor conduct
any corrections or adjustments to Lab 2’s spectra to minimize

Figure 3. Scatter plots of measured and predicted ion abundances form/z 182 for cocaine: (A) normalized abundance ofm/z 182 relative to the base
peak in 128 spectra (cases) collected over 6 months; (B) scatter plot of the normalized abundance ofm/z 182 versus the normalized abundance ofm/z
198 in the same data; (C) scatter plot of the normalized abundance ofm/z 182 versus the EASI-predicted abundances using the coefficients shown in
Table 2; (D) scatter plot of the standardized residuals versus the standardized predicted abundances based on the 128 predictions in panel C; (E)
frequency distribution plot of the standardized residuals of the 128 predictions in panels C and D; and (F) P−P plot of the standardized residuals in
panels C and D.
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the residual errors between the predicted and measured ion
abundances. One caveat is that Lab 1’s spectral variance may be
dominated by changes in excitation energy whereas a Lab 2’s
spectra might differ from Lab 1 primarily because of a difference
in apparent observation times. In such cases, if the rate of change
in ion abundances as a function of time and energy are disparate,
then the linear models based on changes in energymay notmake
accurate predictions about ion abundances affected by changes
in time. Such issues could be answered and solved by using a
training set that incorporates data from all the instruments of
intended deployment.

Figure 2E,F indicates that, whether the variance between Labs
1 and 2 are caused by differences in internal energies or
observation times, there are likely to be some strong linear
relationships that relate the two domains of variance. EASI
outlines a basic framework to help identify the ions that best
explain one another’s abundance and thereby enable robust and
accurate predictions between laboratories. Here, we use
stepwise general linear modeling, but many other solutions to
interlaboratory comparisons are conceivable based on the same
underlying assumption of linear correlations between ion
abundances of replicate spectra.

To gain an appreciation of the natural variance of correlations
among measured product ions in replicate spectra, Figure 3A
shows the relative abundance ofm/z 182 versus case number for
128 replicate analyses of a cocaine standard in an operational
forensic laboratory over a 6-month period.28 The database
includes an average of about one cocaine spectrum per business
day. Our previous analysis of the same data included a brief
observation of the correlations between ion abundances in these
replicate spectra, but the previous study did not address the
source of the variance nor how to take advantage of the
correlations to enable spectral identifications.28 When the
normalized abundance of the peak at m/z 182 of cocaine is
plotted as a function of the case number, the abundances vary
over the wide range of ∼34−100% (Figure 3A). In cases where
m/z 182 was the base peak, the abundance ofm/z 82 was as low

as 78%. Again, most past and present algorithms assume this
scatter is random48,142 and/or that this variance can only be
controlled using “properly tuned” instruments.38,55 However,
the bivariate plot in Figure 3B shows that the variance in the
normalized abundance of m/z 182 is not random and that, for
example, ∼ 82% of the variance in its normalized abundance can
be explained by the normalized abundance atm/z 198. This is to
say that the abundance at m/z 182 correlates far better with the
abundance at m/z 198 than it does with the peak at m/z 82,
which is typically the base peak.

Table 1 shows the bivariate correlations for the 20 most
abundant fragments in the training set of 128 cocaine spectra
collected over 6 months in Lab 1. Admittedly, the choice to
model the 20 most abundant ions is somewhat arbitrary. The
number of variables could be optimized and validated in future
work and with different substances. In this case, the choice to
include 20 ion abundances deliberately enabled the inclusion of
the fragments at m/z 94 and m/z 152, which are known to be
important for the discrimination of cocaine from its diaster-
eomers, like pseudococaine.117,118 The introduction includes
many examples of algorithms that report only a slight loss in
performance when using smaller fractions of the measured peaks
in spectral comparison algorithms.11

The statistical significance of each cross-correlation is
provided in Table S1. Table 1 shows that, in general, ions that
appear close in m/z value to one another tend to correlate more
strongly than with ions of disparatem/z values. This observation
can be thought of as a mass bias or tuning effect, which causes
ions of similarm/z to correlate. Exceptions arem/z 105 andm/z
77, which share a strong correlation by virtue of the close
mechanistic and kinetic relationships between them, i.e.,m/z 77
is a direct cleavage product of −CO (28 Da) from m/z
105.116−118 As shown in Table 1, the normalized abundance of
m/z 198 visualized in Figure 3B is one of many ions that
correlate strongly with the normalized abundance atm/z 182, so
several other ions could also serve as independent variables with

Table 1. Summary of Bivariate Pearson Correlations for the 20 Most Abundant Fragments of Cocainea

aAbundances were normalized to the base peak before analysis. N = 128 spectra over 6 months from an operational crime laboratory (Lab 1). The
two largest bivariate Pearson correlations in each row are shaded gold.
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which to model or predict the abundance at m/z 182 as the
dependent variable.

Extending this idea further, the abundance of m/z 182 as a
dependent variable can be modeled or predicted using a general
linear model by employing multiple covariates in a single model,
as shown in eq 5:

= + + + +y x x x... n n0 1 1 2 2 (5)

where y is the abundance of the dependent variable (e.g., m/z
182), β0 is the y-intercept, β1 through βn are the covariate
coefficients, x1 through xn are the covariate ion abundances (e.g.,
m/z 198 andm/z 183), and ε is the residual error. Conceptually,
general linear modeling (GLM) can be thought of as a weighted
average of more than one linear regression model (y = β0 + β1x1
+ ε). GLM is a classical statistical technique that was elegantly
demonstrated by Sir Francis Galton in 1886 when he showed
that the height of an adult, the dependent variable, could be
accurately modeled or predicted using the heights of his/her
biological parents, the covariates.143 In an application vaguely
similar to the one described here, GLM has also been used to
estimate missing values (not m/z abundances) from a failed
sensor to help stabilize the behavior of different multivariate
models in a process-control setting.144 General linear modeling
has also been used to predict GC retention indices as the
dependent variable from a variety of molecular properties as
covariates.145

In Figure 3C, the abundance of m/z 182 as the dependent
variable was modeled in IBM’s SPSS software (version 28.0)
using stepwise development of a general linear model.
Covariates were added when their contribution to the model
was significant at F≤ 0.05 and removed when their contribution
was insignificant at F ≥ 0.1. Of the 20 developed models, the
models varied from as few as three covariates (not including the
y-intercept) for m/z 272 to as many as 12 covariates to

effectively modelm/z 51. The unstandardized coefficients in the
20 GLM models are provided in Table 2. The fact that the
stepwise models never require all 20 ions to maximize the extent
of explainable variance is an indication that satisfactory
performance of GLM could probably be obtained using fewer
than 20 ion abundances at the onset. Again, the focus of the
current manuscript is a proof-of-concept rather than complete
optimization.

As an example of how to use this table, the abundance of m/z
182 (Â182) in any cocaine spectrum can be predicted using the
remaining ion abundances in the spectrum using the equation:

= + + +

+ + +

A A A A

A A A

16.6 0.13 0.38 1.88

4.44 2.72 0.34
182 77 83 152

183 198 303 (6)

The results of 128 such predictions using this model are
shown against the measured values for the training set in Figure
3C. The coefficient of determination (R2) of the regression line
shows that this general linear model explains more than 95% of
the variance in the measured abundances ofm/z 182. Therefore,
more than 95% of the variance in the abundance of m/z 182 in
the 128 spectra is not random and is explainable through
covariance mapping. Figure 3D−F shows different ways of
assessing the distribution of the residual differences between the
modeled (predicted) abundances and the measured abundances
at m/z 182 for the training set. In short, the residuals follow a
normal distribution, are not significantly biased or skewed, and
do not display problematic kurtosis. The residuals were also
assessed for the remaining 19 models, and only 4 of the 20
models contained statistically significant skew. Seventeen of the
20 models contained kurtosis greater than the margin of error
(0.425), and most had kurtosis measures >3, which indicates
that the residuals generally displayed leptokurtosis with wider
tails than Gaussian. Therefore, several of the observed P−P plots

Table 2. Summary of the Unstandardized Coefficients for 20 General Linear RegressionModels Using the Abundance of Eachm/
z Value as a Dependent Variable and the Remaining 19 Abundances as Possible Covariates*

*Bold underlined font indicates the most significant standardized coefficient in each regression model. N = 128 spectra were used as the training set
with the 20 most abundant peaks selected. aAs an example of how to use these coefficients, these coefficients are employed in eq 6 to predict the
abundance of m/z 182 in any given query spectrum.
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showed some deviation from perfect normality, but the
deviations were mild and considered satisfactory as a proof-of-
concept of this approach.

Future work should continue to address the validity of the
assumptions necessary to support the proposed statistical
modeling. For example, given that normalized ion abundances
can never be negative, the measured distributions might act
more Poisson than Gaussian, so modeling methods could be
adjusted accordingly. As a final measure of validity, we also
performed a correlation analysis on the residuals (ε) that
resulted from GLM. Covariance mapping of the residuals of the
training set predictions showed that only ∼10% of the 190
pairwise comparison tests between the different m/z channels
showed any significant correlation. Therefore, GLM effectively
explained and removed almost all the cross-correlations that
existed in the normalized abundances of the replicate spectra in
the training set.

So far, the discussion has shown that the branching ratios of
the 128 cocaine spectra in the training set contain ion
abundances that are strongly linearly correlated, as approxi-
mated over modest changes in energy and time by QET/RRKM
theories of unimolecular fragmentation. Also, that GLM is a
reasonably valid approach that can explain more than 90% of the
variance in normalized ion abundances. The next step is to
demonstrate that linear models built on the training set from one
instrument can be extrapolated to spectra collected on different
instruments.

To demonstrate such extrapolation, the general linear models
built on the training set of 128 cocaine spectra were applied to
several groups of spectra: (1) a validation set that consisted of
120 validation cocaine spectra from a second crime laboratory

(Lab 2); (2) 55 validation cocaine spectra from the NIST
archive; (3) 706 replicate known negative spectra of ecgonine
methyl ester, fentanyl, heroin, hydromorphone, and metham-
phetamine; and (4) a total of 10 replicate known negative
spectra of the four diastereomers of cocaine from the NIST
archive, including allococaine, pseudococaine, and pseudoallo-
cocaine. Bivariate plots of measured abundances versus
predicted abundances for a select number of fragments of
cocaine are provided in Figure 4 and Supplemental Figures S4−
S8. Summary statistics for the four groups of spectra are also
provided in Table S2.

Figure 4A is a scatterplot of the measured abundance of m/z
182 versus the predicted abundance of m/z 182 for all 1019
spectra in the database. The general linear model is the one
shown in eq 6, but in this case the model is applied to all spectra
in the database, including all known positives (KPs) and known
negatives (KNs). The box and whisker plots in Supplemental
Figure S9A show the same measured values in Figure 4A in a
manner that makes the distributions of measured values easier to
compare. Note that the KN diastereomers in orange provide
measured abundances of m/z 182 that are closer to the mean of
the training set (i.e., the consensus spectrum57,121) than most of
the 175 KP cocaine validation spectra. For example, the mean
abundances for m/z 182 are 70.6% for the KP training set and
72.7% for the KN diastereomers, but 88.4% for the KP validation
set.

Most of the other KNs provide abundances for m/z 182 that
are <10% relative abundance, so they are easily dismissed as not
behaving like cocaine. Therefore, whereas all the measured
abundances of m/z 182 in the spectra of cocaine and its
diastereomers are notably different from the known negatives in

Figure 4. Scatter plots of measured and modeled/predicted values for a few selected ions of cocaine: (A)m/z 182, (B) m/z 94, (C) m/z 77, and (D)
m/z 272. Horizontal lines show themean abundances for the training set from Lab 1 (light blue) and validation set from other laboratories (dark blue).
The line y = x refers to the ideal case of no residual error in predictions.
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the database, the relative abundances of m/z 182 of cocaine
diastereomers are not significantly different (t-test, two-tailed, α
= 0.05) from that of the cocaine training set.

Figure 4B is a scatterplot of the measured abundance of m/z
94 versus the predicted abundance ofm/z 94 for all 1019 spectra
in the database. Again, the general linear model was built on the
training spectra of 128 cocaine spectra from Lab 1 and used the
coefficients provided in the row for m/z 94 in Table 2. Box and
whisker plots of the same data are shown in Supplemental Figure
S9B. In this case, the training set has a mean abundance of 47.1%
for m/z 94, the validation spectra of cocaine have a mean
abundance of 34.1%, and the diastereomers have a mean
abundance of 18.4%. The outlier in the diastereomers is a
spectrum of pseudoallococaine, which has been shown to share
spectral similarity with cocaine because of the steric similarity of
the activated complexes.117,118 Here, the measured ranges of the
training and validation sets of cocaine are significantly different
(one-way ANOVA, post hoc least significant difference (LSD):
p < 0.001). However, the regression line in Figure 4B enables
accurate predictions for abundances of m/z 94 in the test set,
even though the measured values in the test set are outside most
of those in the training set. For example, the smallest abundance
form/z 94 in the training set of Lab 1 was 35.1%, but more than
half of the test set provided abundances below this threshold.
The ability to extrapolate the general linear model in Figure 4B
to fit the abundance measurements of known positives made on
different instruments and in different laboratories is unique to
this algorithm, and it demonstrates the reliance on statistical
behavior predicted by approximations of QET/RRKM theory,
as demonstrated in Figure 2E,F.

The scatter plots of measured versus modeled abundances for
m/z 77 and m/z 272 in Figure 4C,D further support the
contention that the modeled linear behavior in one laboratory
can be used to make accurate predictions about ion abundances
in other laboratories, even when the range of measured values is
substantially different between the laboratories. Supplemental
Figures S4−S8 provide additional examples of effective
extrapolations for fragments at m/z 68, 105, 122, 152, and
303, respectively. Each model varies in its effectiveness at
extrapolating between the two laboratories. In many of these
figures, the predicted abundances for the diastereomers of
cocaine have larger residual errors than most of the cocaine
spectra.

Although the current manuscript only provides modeling data
for cocaine, we have applied GLM to replicate spectra of various
analytes on different types of instruments, including: (1)
electron ionization spectra from GC-MS instruments, (2)
electrospray ionization tandem mass spectrometry (ESI-MS/
MS) data from a quadrupole time-of-flight instrument, and (3)
direct analysis in real time (DART) MS/MS spectra from a
triple-quadrupole mass spectrometer. In all cases, multivariate
linear models provided similar figures of merit as presented here,
such as explaining more than 90% of the variance in the
normalized fragment ion abundances, and that the residual
errors between modeled and measured abundances were
distributed in an approximately Normal manner. Furthermore,
the residuals using EASI were typically ∼4 times smaller than
residuals between measured abundances and their correspond-
ing centroid values of the training set. Therefore, the results for
cocaine presented here can be considered a typical result rather
than an outlier.

These results indicate that instead of focusing on one or two
specific ion ratios to enable discrimination between a compound

and a closely related structure (e.g., cocaine and alloco-
caine),116−118 GLM can help explain other sources of variance
between cocaine and its diastereomers. There are many ways
that one could use correlations between different pairs of ions in
replicate spectra to establish whether the fragment ion
abundances in a questioned spectrum follow the expected
behavior of a substance or not. Several examples are described in
part 2 of this manuscript.

■ CONCLUSIONS
This manuscript demonstrates that GLM is a reasonably robust
and valid approach to model the branching ratios of replicate
spectra of cocaine. The residual differences between measured
andmodeled abundances for the 20most abundant fragments of
cocaine are approximately normally distributed and uncorre-
lated with one another, unlike the input normalized abundances.
Most importantly, the models can be extrapolated to make
accurate and robust predictions of relative ion abundances for
cocaine spectra collected on various types of mass analyzers in
different laboratories dating back to the 1980s. One example for
the peak at m/z 182 shows that the variance in normalized ion
abundance ranges from 40 to 100% (70 ± 30% confidence
interval) in the training set, but a simple general linear model
with one constant and six terms enables the same ion
abundances to be predicted with confidence intervals less than
±2%. The linear behaviors modeled in this work are predicted
by QET/RRKM theories of unimolecular fragmentation that
were developed in the 1950s, and they are modeled using an
approach that has been in use since at least the 1880s. In the
future, neural networks and machine learning algorithms could
also be used to take advantage of the linear relationships
predicted by QET/RRKM theory. Finally, the developed
coefficients for cocaine provided in Table 2 can be considered
reasonably valid for predicting the relative ion abundances
within any 70 eV mass spectrum of cocaine on any mass
spectrometer, in perpetuity. To apply EASI to future casework
samples of cocaine, analysts would not need access to a database
of hundreds of replicate spectra of cocaine to enable reliable
spectral identification, they would only need to refer to a table
containing fewer than 100 linear coefficients, as provided in
Table 2. The companion manuscript describes how to use the
GLM models as a binary classifier to enable effective
discrimination between cocaine and any known negatives,
including its diastereomers.
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