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ABSTRACT: This is the second of two manuscripts describing
how general linear modeling (GLM) of a selection of the most
abundant normalized fragment ion abundances of replicate mass
spectra from one laboratory can be used in conjunction with binary
classifiers to enable specific and selective identifications with
reportable error rates of spectra from other laboratories. Here, the
proof-of-concept uses a training set of 128 replicate cocaine spectra
from one crime laboratory as the basis of GLM modeling. GLM
models for the 20 most abundant fragments of cocaine were then
applied to 175 additional test/validation cocaine spectra collected
in more than a dozen crime laboratories and 716 known negative spectra, which included 10 spectra of three diastereomers of
cocaine. Spectral similarity and dissimilarity between the measured and predicted abundances were assessed using a variety of
conventional measures, including the mean absolute residual and NIST’s spectral similarity score. For each spectral measure, GLM
predictions were compared to the traditional exemplar approach, which used the average of the cocaine training set as the consensus
spectrum for comparisons. In unsupervised models, EASI provided better than a 95% true positive rate for cocaine with a 0% false
positive rate. A supervised binary logistic regression model provided 100% accuracy and no errors using EASI-predicted abundances
of only four peaks at m/z 152, 198, 272, and 303. Regardless of the measure of spectral similarity, error rates for identifications using
EASI were superior to the traditional exemplar/consensus approach. As a supervised binary classifier, EASI was more reliable than
using Mahalanobis distances.
KEYWORDS: spectral comparisons, spectral algorithm, search algorithm, forensic science, binary classification, drug identification

■ INTRODUCTION
Gas chromatography−electron ionization−mass spectrometry
(GC−EI−MS) is classified by the Scientific Working Group
for the Analysis of Seized Drugs (SWGDRUG) and ASTM as
both a Category A technique for mass spectrometry and a
Category B technique for chromatography, based on its
maximum potential discriminating power. As a hyphenated
technique, GC−MS is therefore considered a confirmatory
method because it uses structural information and is among
the most selective and specific of analytical techniques.1 One of
the earliest uses of GC−EI−MS to identify drugs of abuse in a
forensic setting was in 1971 when Law et al. highlighted the
ability of mass spectrometry to offer reliable mass spectral
fingerprints for immediate and accurate identification of
compounds.2 The specificity and selectivity of GC−EI−MS
derive from the two-dimensional nature of the data; one can
combine the mass spectral and retention time data to
discriminate among structurally similar analogs.3−14 However,
if a questioned sample has not, or cannot, be analyzed on the
same instrument with the same conditions as a reference

sample, the increased uncertainty in matching retention times
and ion abundances of data from different instruments may
prevent the differentiation of structurally similar compounds.
Also, as a matter of principle, analysts should strive to
maximize the power of discrimination available from each
dimension of information to provide the maximum affordable
confidence in compound identifications. The present study
aims to maximize the informative power of the mass
spectrometric data.
When coelution occurs between different analytes, chroma-

tographic peaks can be deconvoluted from each other and/or
from background ions based on the assumption that the
absolute signal intensity of all ions from the same substance
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correlate perfectly as a function of time.6,8,15−18 Once
chromatographic peaks are deconvoluted from one another,
or background corrected, there are many mathematical
approaches to compute spectral similarity or dissimilarity
between an extracted spectrum and a reference spec-
trum.9,19−22 Some algorithms use a subset of the spectra,
usually of the most abundant peaks, as their searching
criteria.23,24 However, most approaches struggle to distinguish
between compounds with extensive spectral similarity,
especially when the rank order of the peaks fluctuates or
when any distinct fragments are of low relative abundance.23,25

Hertz et al. argued that mass spectral comparisons should
include features of the entire spectrum,23 so they developed a
quantitative measure of similarity�known as the similarity
index�that used the two most abundant peaks every 14 Da
across the spectrum. McLafferty and Gohlke argued that
relatively minor peaks may provide the necessary information
for identifications,26 and McLafferty and others went on to
implement probability-based matching (PBM).20,27,28 PBM
makes use of “negative information”, such as absent peaks in
the unknown spectrum�i.e., the “reverse search”�as well as
the peaks present in the spectrum to make an identification.
The algorithm is used in Agilent’s software, and the details of
these calculations and improvements to this algorithm over the
years have been thoroughly documented in the literature.29,30

Other popular algorithms used for database search
identification during this period are all based on comparing
an exemplar or consensus spectrum in a database to the
queried spectrum.31−34 Examples of common measures of
similarity and dissimilarity include the Euclidean dis-
tance,18,19,35 absolute value distance,18,19,35 and the dot-
product or cosine similarity algorithm, which compares a
query and reference spectrum by calculating the cosine angle
between their vector representations.20,36 Stein and Scott
performed a comparative study of the five most popular
algorithms.20 Their results showed the dot-product approach
to be the best performing algorithm (75% accuracy for Rank
1), followed by Euclidean distance (72%), absolute value
distance (68%), PBM (65%), and the Hertz similarity index
(64%).20 Samokhin et al. found similar lackluster results for
different search algorithms from different vendors.37

Today, although many new algorithms have appeared for
mass spectra from direct analysis in real time-mass
spectrometry (DART-MS)38,39 and MS/MS data,36,40−47 the
most widely used mass spectral comparison algorithm for GC−
MS data is probably the NIST similarity search algorithm,20

which is an adaptation of the simple dot product, r, or cosine
angle between two spectra22
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where A and B are n-dimensional vectors of spectral
abundances, Ai is the ith element of vector A, and Bi is the
ith element of vector B. Typically, A and B have dimensionality
defined by the number of selected m/z values in the spectra,
and they take values of normalized abundances between 0 and
100.
Stein and Scott showed that the ranking order of correct

identities could be improved by using an optimized set of
arbitrary weight factors (x, y) to create new weighted variables,

AL(weighted), from the peak abundances, [AL]x, and correspond-
ing m/z values, m/zy, as demonstrated in eq 2.20,48

= [ ] ·A A m z/x y
L(weighted) L (2)

Taking the dot product of these weighted variables
emphasizes the importance of the larger m/z values�such as
molecular ions�and de-emphasizes the most abundant peaks,
which are oftentimes not as spectrally unique as low-
abundance fragments. Kim et al. developed a method to
determine optimal factors of x and y in Stein’s algorithm and
thereby maximize the accuracy of compound identification
using the National Institute of Standards and Technology/
Environmental Protection Agency/National Institutes of
Health (NIST/EPA/NIH) Mass Spectral Library.49 Kim et
al. demonstrated that weight factors of x = 0.53 and y = 1.3
provided an accuracy of 82.83% for #1 ranked correct
identities, but they admit that the optimal factors are
somewhat arbitrary and are dependent on specific mass
spectral libraries, which are often updated.49

Stein’s similarity search algorithm is dependent on the
relative abundance of peaks in both the unknown and library
spectra,20,49,50 and although probabilities exist for the ranking
accuracy of hundreds of searches, probabilistic measures of
accuracy are not available on a compound-specific basis.50,51

Therefore, in terms of drug identifications in a forensic setting,
NIST match factors have questionable value in helping
practitioners meet admissibility criteria described in Federal
Rules of Evidence 702, especially for structurally and spectrally
related fentanyl analogs.52 That said, NIST continues to
develop mass spectral comparison tools that help analysts find
spectral and structural similarity between questioned spectra
and known spectra,14,38,39,50,52,53 and these tools will
unquestionably assist analysts in identifying rare or novel
substances in the future.
Studies by Smith et al. on cocaine diastereomers54,55 and

Mallette et al. on fentanyl isomers56,57 show that the EI-mass
spectra between the structurally related analogs are almost
indistinguishable. However, careful analysis can reveal
significant differences in relative ion abundance of a few ratios
of ions, such as m/z 94/96 and m/z 152/155 for cocaine
diastereomers54,55 and m/z 202/203 and m/z 160/216 for 2-
versus 3-methylfentanyl.57 These studies demonstrate that
library-retrieved identification must be supplemented with
close expert supervision to enable the discrimination of
structurally related analogs.57 However, such manual, sub-
jective procedures are not ideal because they are difficult to
articulate and defend in a legal setting. Also, such nuanced
differences are not transferable to other drugs or analogs.
Smith and McGuffin applied an unequal variance t-test on

each m/z value across two spectra (query and library) to
determine if spectra were significantly different or not.58−60

For phenethylamines, random match probability (RMP)
testing provided probabilities on the order of 10−39 to 10−29,
which indicates the very low probability that the characteristic
fragmentation patterns occurred by chance. Smith et al. note
that the RMP calculations assume that the abundance of each
ion in a spectrum is independent, but previous work shows that
fragments ions are strongly correlated, with correlation
coefficients (R) between normalized pairs of ions often
exceeding 0.9;61,62 hence, the absolute probabilities obtained
through RMP are probably overly optimistic. Here, we present
an algorithm that demonstrates the ability to make reliable
identifications of cocaine, even when the spectra are collected
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on different instruments and when known positives (KPs) have
more obvious differences with the training set than some
known negatives (KNs).
Although the expert algorithm for substance identification

(EASI) is applied to EI mass spectra of cocaine in this work,
the extension to other drugs and to tandem mass spectra of all
kinds should be obvious. Given that the validity of EASI relies
on the competitive rates of unimolecular fragmentation
described by quasi-equilibrium theory/Rice−Ramsperger−
Kassel−Marcus (QET/RRKM) theories, as described in the
previous manuscript,62 EASI should be applicable to any type
of mass spectrometer that provides fragments of precursors,
whether from EI�as described here�or from electrospray
ionization−tandem mass spectrometry (ESI-MS/MS). EASI
simply improves the prediction accuracy of fragment ion
abundances relative to traditional approaches that use a
discrete exemplar or a consensus spectrum as the basis for
predictions. Here, we define the predicted abundances of
traditional approaches as either those abundances measured in
a single reference spectrum, as in a discrete exemplar, or the
average/median spectrum from a collection of reference
spectra, as in the consensus approach. The consensus approach
can take the form of a data array of abundances versus m/z or
abundances with uncertainties versus m/z.32,63,64 Also, whereas
the data structure of normalized mass spectra are usually
strictly limited to abundances from zero to 100, abundance
predictions in EASI are not necessarily limited by the same
bounds; known negatives are often so ill-fitting to the cocaine
model that abundance predictions less than zero and greater
than 100 are quite common. New opportunities for handling
such data structures may arise, but existing measures of spectral
comparisons handle any negative abundances perfectly well.

■ EXPERIMENTAL METHODS
As described in our previous manuscript,62 general linear
modeling (GLM) was used to predict the relative ion
abundances for the 20 most abundant fragments in a database
of 128 replicates of a cocaine standard that were collected over
a 6-month period in an operational crime laboratory. No
attempt was made to control the measurement variability
beyond typical laboratory procedures. Summary statistics for
the measured abundances of different sets of data are provided
in Table S1. Each of the 20 most abundant peaks�as defined
by the consensus spectrum32�was iteratively treated as a
dependent variable, and the 19 remaining covariates were
added (or removed) in a stepwise manner until there was no
significant improvement (i.e., F ≥ 0.1) in the amount of
variance explained. The GLM resulted in empirical models that
contained between three to 12 covariates. The models typically
explained more than 90% of the variance of the relative
abundance of each dependent ion. The coefficients for each
covariate in all 20 models are also provided in Table 2 of our
previous manuscript.62

Our previous manuscript also suggested that the general
linear models built on the training cocaine data from the first
crime laboratory (Lab 1) could be extrapolated to make
accurate predictions for the 175 cocaine spectra from a
different laboratory and 55 cocaine spectra from the NIST
archive, which includes spectra collected on a variety of
instruments dating back to the 1980s.62 This current
manuscript provides the details of those claims and outlines
different ways to assimilate the 20 predictions within each
query spectrum to enable effective binary classification to two

groups: “cocaine” and “not cocaine”. In this case, the known
negatives include 10 replicate spectra of three cocaine
diastereomers, ecgonine methyl ester, heroin, hydromorphone,
fentanyl, and methamphetamine. For each future application of
EASI to the identification of a particular drug, replicate spectra
of each drug would need to be collected and modeled. The
obvious computational expenses imply that EASI would only
be applied to the top-ranked candidates after a conventional
ranking algorithm has already limited the list of likely drug
identities.37,65−67

The predicted abundances in the two compared approaches
(EASI and traditional/consensus) are defined differently. In
the consensus approach, the mean spectrum of the training set
of 128 spectra from one lab serves as the exemplar spectrum of
predicted ion abundances to which all other spectra are
compared. This approach represents the status quo in which
one assumes there is a “best” or “true” exemplar spectrum of
cocaine. In the EASI approach, the relative abundances
modeled by the 20 general linear models of cocaine serve as
the 20 predicted ion abundances. In EASI, the predicted
abundance of a specific fragment (e.g., m/z 182) in each query
spectrum will therefore change depending on the abundance of
the other measured fragments in each query spectrum. The
beta (β) coefficients in Table 2 of the first manuscript describe
the extent to which each variable is used, or not, in each GLM
model. Predicted values and the residuals to the measured
values of the consensus approach and EASI approach were
assessed using various spectral similarity measures, described
below, to demonstrate that binary classification using EASI
improves the accuracy of cocaine identification relative to
conventional methods regardless of the chosen method of
spectral matching.
Even though numerous vendors listed various diastereomers

of cocaine in their catalogs, no vendors were willing/able to
ship any diastereomers. Communications revealed that the
isomers had not been recharacterized in recent memory and
the vendors could no longer validate the stereochemistry. For
these reasons, we could not increase the number of known
negative spectra of diastereomers in our database beyond the
10 replicates contained in the NIST archive.
Mean Absolute Residuals (MAR). Residuals can be

positive or negative, and if the residuals are not skewed, the
mean of many unbiased residuals will be zero. There is
therefore no value in assessing the mean spectral residual of 20
predications for each spectrum. Instead, we calculated the
MAR for the two different approaches�EASI and con-
sensus�using eq 3

=
| |x x

n
MAR i i

(3)

where x̂ is the predicted abundance, x is the measured
abundance, i is the ith abundance, and n is the total number of
ions, which in these examples is always the same 20 most
abundant ions in the training set of cocaine spectra.
Throughout the document, all abundances and residuals are
reported relative to each spectrum’s internal base peak at
100%. We prefer the MAR instead of the root mean squared
error or predictions (RMSEP) because the MAR does not
scale with the number of measurements, so the MAR enables
simple comparisons if the number of measurements changes.
Euclidean Distances. The Euclidean distance, or the

square root of the sum of squares of residuals, is another well-
known metric to assess the fitness of multivariate predic-
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tions.3,4 The Euclidean distance (eq 4) is the shortest distance
between uncorrelated multidimensional data; in two-dimen-
sional space the Euclidean distance, dEuclid, is a straight line
between two points

=
=

d x x( )
k

n

i k i kEuclid
1

, ,
2

1/2Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (4)

where k is the variable number (1−20 in this work), x̂i is the
predicted abundance, and xi is the measured abundance for the
ith spectrum. Given that the residuals in EASI are not
significantly correlated among the 20 models for cocaine,62 the
Euclidean distance is a valid approach to assess the residuals.
However, the strong correlation between raw and normalized
ion abundances makes the Euclidean distance unsuitable for
assessing distances on the original peak heights.
Dot Products and NIST Scores. Within each query

spectrum, each of the 20 measured abundances were compared
to the 20 predicted abundances using either GLM models in
the EASI approach or the mean abundances of the training set
in the consensus spectrum approach. Dot products were
calculated according to eq 1, and NIST scores were calculated
according to eqs 1 and 2 using Stein’s original weighting
factors of x = 0.6 and y = 3 and a scaling factor of 999.20

Mahalanobis Distances. The Mahalanobis distance can
be thought of as the Euclidean distance in multidimensional
space after a whitening transformation via the covariance
matrix to remove the covariance between the variables.68 The
Mahalanobis distances can be calculated directly on the
normalized spectra, and no separate linear modeling is
necessary. Given the extensive covariance between relative
ion abundances in replicate spectra, it seemed reasonable to
assess the Mahalanobis distance69 of every spectrum in the
database of 1019 spectra to the multidimensional space defined
by the variance of the 128 training spectra of cocaine from Lab
1.70 The Mahalanobis distance dMahal to the central mean of a
training set is defined as

= · ·Cd x x x x( ) ( )i
T

iMahal
1

(5)

where xi is an object vector, x̅ is the arithmetic mean vector, C
is the sample covariance matrix (eq 5), and T is the transpose

operator. The distances can be interpreted as being equivalent
to the number of standard deviations away from the mean in
multidimensional space, and they can either be compared to
statistically relevant distances, such as using the Hotelling’s T2

test,70 or simply relative to one another in receiver operating
characteristic (ROC) curves,71−73 as is done here. Strictly
speaking, the Mahalanobis distance is designed to work in well-
calibrated situations in which the training set includes all the
expected sources and magnitudes of variance as the queried
samples.68 Therefore, one notable difference between GLM
employed in EASI and the Mahalanobis distance is that GLM
can�in theory�be extrapolated to model behavior that is
outside the measured variance of the training set, as
demonstrated in part 1 of this manuscript.62 Therefore,
known-positive query spectra from outside the training set�
such as those collected on different instruments or using
different conditions�that are significantly different from the
training set with respect to their Mahalanobis distances should
still be accurately predicted and not erroneously rejected by
EASI’s GLM.
Receiver Operating Characteristic (ROC) Curves. A

ROC curve is a graphical visualization of the true positive rate
(TPR), or sensitivity, versus the true negative rate (TNR), or
1-specificity.71,72 ROC curves allow users to determine the
effectiveness of similarity and dissimilarity metrics as binary
classifiers, and they can be used to evaluate binary decision
algorithms like “yes” and “no” to a chemical identification.74,75

Using the measures of mass spectral similarity and dissimilarity
described above as continuous variables, the number of true
positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs) were assessed at a variety of
threshold values for every spectrum in the database. A plot of
TPR vs 1-TNR (the false positive rate) allows users to see the
trade-off between the TPs and TNs when various thresholds
are chosen for binary decisions. In addition, one can visualize a
confusion matrix of the number of TPs, TNs, FPs, and FNs at
each threshold value.

= = =
+

TPR sensitivity recall
TP

TP FN (6)

Figure 1. (A) Bar chart to show one NIST validation spectrum of cocaine (a known positive [KP]), relative to both the consensus spectrum
abundances of cocaine from Lab 1 and EASI-predicted abundances based on the same training set. (B) Scatter plot of the same data to show the
origins of the residual errors of the predictions. Red ovals highlight large residual differences, which are unfavorable for a known positive, and green
ovals indicate improved predictions. The dashed black line in B shows y = x for errorless predictions.
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= =
+

TNR specificity
TN

TN FP (7)

= =
+

positive predictive power precision
TP

TP FP (8)

We also report the area under the curve (AUC) for the ROC
curves, which is a well-accepted measure of a test’s general
discriminating power.5,8,37,40,71,76−78 The AUC informs a user
how well a model correctly identifies a substance over the
range of decision points. An AUC of 1.0 is the maximum value
and indicates a perfect test, or errorless identification, in which
all known negatives have measures of dissimilarity that are
larger than all known positives (or in which all known
negatives have measures of spectral similarity that are smaller
than all the known positives). An AUC of 0.5 indicates a 50%
chance of correct classification, which is not better than a
random classifier, so it holds no discriminatory value. Of
course, AUCs closest to 1 are most desirable. ROC curves were
assessed using various measures of spectral comparisons,
including the dot products, NIST scores, MARs, Euclidean
distances, and Mahalanobis distances. Precision−recall curves
are also presented to better understand the positive predictive
power of the unbalanced data set.79 Precision−recall curves
that cross the boundary condition at (1,1) are perfect
classifiers.

■ RESULTS AND DISCUSSION
Our previous manuscript described the kinetic basis for using
GLM to model the ion abundances of ions in replicate
spectra.62 As a proof-of-concept, we are continuing the
description of the proposed algorithm to the same database
of cocaine spectra.61,62 Example predictions from two types of
models are presented in Figure 1.
In light blue are the measured values from one of the

validation spectra of cocaine from the NIST archive. This
spectrum was collected on a different instrument, in a different
decade, than those in the training set. In orange are the
consensus (mean) abundances of the training set. In
conventional statistics, the mean values of the training set
would normally serve as the best estimates for the population
mean or “true” values because x̅ → μ. For at least the three

fragments circled in green, m/z 77, 94 and 105, the
abundances in the NIST cocaine spectrum are at least 10%
smaller (relative to the base peak) than the consensus cocaine
spectrum, which are circled in red. In contrast, the abundance
of m/z 182 in the NIST spectrum is around 10% larger than in
the consensus spectrum. These residual errors in abundance
predictions of ∼10% or more are readily observable in the
bivariate plots of measured vs predicted abundances in Figure
1B. For reference, errorless predictions are denoted by the
dashed black line y = x. Even though this NIST cocaine
spectrum has obvious differences from the consensus cocaine
spectrum from Lab 1, the 20 GLM models used in the EASI
approach make better predictions than the consensus spectrum
approach. Such improvements in predictions are only possible
because the deviations between the training set and the NIST
spectrum are systematic in nature and not random. These
systematic differences are explained mathematically by QET/
RRKM theories, as demonstrated in our previous manu-
script.62

Figure 1B shows that for the 20 predicted ion abundances
within the spectrum it is possible to derive 20 residual errors or
one Pearson product−moment correlation (PPMC) value (R).
As described in the Experimental Methods, the 20 residual
errors in each predicted spectrum can then be assimilated into
a single measure of spectral dissimilarity in a variety of ways.
One note of caution regarding the interpretation of PPMC
values is that it is theoretically possible for all the predicted
values to differ from all the measured values yet still provide a
PPMC of 1. Such a case could happen, for example, if all the
predictions had a constant proportional error. For this reason,
dot products are used here instead of PPMC values. Still, as a
rule of thumb, coefficients of determination, R2 values closer to
1 are generally indicative of more accurate predictions and can
be interpreted as increasing the confidence in the correct
identity for the model.
In Figure 1B, the consensus cocaine spectrum provides an R2

value of 0.9416 relative to the query cocaine spectrum from
NIST, but the GLM-predicted abundances in EASI provide an
R2 value of 0.9961, which is a better fit. The MAR and
Euclidean distances for the consensus spectrum were 3.74%
and 29.16%, respectively, but only 1.26% and 7.19%,

Figure 2. (A) Bar chart to show one NIST validation spectrum of pseudococaine, a known negative (KN), relative to (i) the consensus spectrum of
cocaine from Lab 1 and (ii) the EASI-predicted abundances. (B) Scatter plot of the same data to show the origins of the PPMC values and residual
errors of the predictions. Red ovals highlight small residual differences, which are unfavorable for a known negative, and green ovals indicate larger
residual errors, which are desirable in this case. The dashed black line in panel B shows y = x for errorless predictions.
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respectively, for the GLM-based modeling in EASI, which in
both cases is at least three times more accurate than the
consensus approach. For all the KPs of cocaine, the accuracy of
predictions was consistently better for EASI than the
consensus approach.
Figure 2 shows the same approach when a KN

pseudococaine spectrum is carried through the cocaine GLM
model. In this case, the spectrum was also from the NIST
archive and therefore on a different instrument. Both the
consensus and EASI approaches produce larger residual errors
than the known positive cocaine spectrum in Figure 1, which is
a desirable property of KNs in a discriminating algorithm.
Some ions of pseudococaine�like m/z 97, 105, and 303�
have abundances that coincidentally are accurately predicted
by the cocaine GLM models, whereas other fragments�like
m/z 77 and 82�are poorly predicted by the cocaine GLM

models and have residual errors as large 33% and 41%,
respectively.
The GLM-predicted abundances for the cocaine model and

the consensus cocaine spectrum both share reasonable
correlation with the KN NIST pseudococaine spectrum, with
R2 values of 0.7221 and 0.7763, respectively. Like the GLM-
predicted abundances, the consensus spectrum of cocaine
differs from the pseudococaine spectrum most significantly at
m/z 77, 94, and 105. The abundance at m/z 94 is a well-
documented point of differentiation between the two stereo-
isomers.54,55,80

For the same spectra in Figure 2, the MAR and Euclidean
distances of the consensus spectrum approach were 8.50% and
62.04%, respectively. The same measures of dissimilarity using
the GLM models in EASI were 8.33% and 60.05%,
respectively. In this case, the pseudococaine spectrum is
almost equally dissimilar using either the consensus or EASI

Table 1. Summary of Mean Absolute Residuals (MARs) between Measured Ion Abundances and the Two Different Models�
Consensus Model and EASI�for a Variety of KPs and KNs

Mean absolute residuals (MARs) (% relative to base peak)

Standard consensus model EASI

Spectral set Mean of set Range of seta Mean of set Range of seta

Known positives (KPs) Lab #1 cocaine; training set (N = 128 spectra) 3.10 1.07−8.17 0.69 0.18−1.81
Lab #2 cocaine; prediction set (N = 120 spectra) 6.36 2.86−12.25 1.43 0.74−2.80
NIST cocaine; validation set (N = 55 spectra) 5.49 2.15−15.07 1.95 0.49−5.18

Known negatives (KNs) Five drugs from Laboratories 1 and 2 (N = 706 spectra) 21.15 14.93−24.37 10.39 7.28−24.10
NIST allococaine (N = 1 spectrum) 8.56 5.47
NIST pseudococaine (N = 7 spectra) 6.30 5.75−11.25 5.07 2.07c−7.38
NIST pseudoallococaine (N = 2 spectra) 6.8 5.73b −6.87 4.52 4.48−4.55

aMAR is defined in eq 3. If the MAR for any KP exceeds that of any KN, errorless predictions are not possible. bA threshold value of 5.72 for the
consensus model has 0 FPs and a total of 83 FNs. cA threshold value of 2.06 for EASI has 0 FPs and a total of 36 FNs.

Figure 3. Frequency distribution plots for mean absolute residuals (MARs) for the consensus (A) and EASI (B) approaches to spectral predictions.
(C) Receiver−operator characteristic (ROC) curves for the two models. (D) Precision−recall curve for the two models.
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approach. In general, most of the KNs in the database provided
similar measures of spectral similarity and dissimilarity using
either the EASI or consensus approach, so both approaches are
equally ineffective at predicting ion abundances of the
stereoisomers of cocaine. Summary statistics of the MARs
for the different spectral sets are provided in Table 1.
Additional summary tables for other measures of spectral
comparisons�dot products, NIST scores, Euclidean distances,
mean absolute residuals, and Mahalanobis distances�are
provided in Supplemental Table S2.
For the KPs from Laboratories 1 and 2, the MARs were, on

average, 4.4 times smaller using EASI than using the consensus

approach. The mean MAR of the NIST archive KPs was 2.8
times smaller using EASI than the consensus approach. The
EASI models for cocaine also made more accurate predictions
for most of the KNs, but the reduction in MARs for the KNs
was smaller than for the KPs. The net result is that EASI
modeling increased the difference between the MARs of KN
spectra and KP spectra because the abundance predictions are
vastly more accurate than the consensus approach for all the
KPs of cocaine than for the KNs. The reason that known
negatives with dissimilar fragmentation patterns to cocaine can
have improved MARs or NIST scores for EASI relative to the
consensus approach is that when the measured and EASI-

Table 2. Summary of NIST Scores between Measured Ion Abundances and Two Different Models of Exemplars�consensus
Model and EASI�for a Variety of KPs and KNs

NIST scores

Standard consensus model EASI

Spectral set Mean Range of set Mean Range of set

Known positives (KPs) Lab #1 cocaine; training set (N = 128 spectra) 995.9 980.7−998.9 998.4 992.6−999.0
Lab #2 cocaine; prediction set (N = 120 spectra) 991.2 976.7−998.6 998.1 984.0−999.0
NIST cocaine; validation set (N = 55 spectra) 993.9 979.2−998.8 992.4 885.3−998.9

Known negatives (KNs) Five drugs from Labs #1 and #2 (N = 706 spectra) 298.6 67.8−499.1 379.2 8.51−913.9
NIST allococaine (N = 1 spectrum) 990.9a 973.0
NIST pseudococaine (N = 7 spectra) 992.2 988.6−996.8a 978.0 959.0−996.0b

NIST pseudoallococaine (N = 2 spectra) 992.5 988.7−996.2 960.2 975.8−994.7
aA threshold NIST score of 996.9 for the consensus approach yields 0 FPs and 179 FNs. bA threshold NIST score of 996.1 for EASI yields 0 FPs
and 28 FNs.

Figure 4. Population plots for NIST scores for the consensus (A, B) and EASI (C, D) approaches to spectral predictions. (E) Receiver−operator
characteristic (ROC) curves for the two models. (F) Precision−recall curve for the two models.
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predicted abundances are both near zero for a certain peak
they inadvertently provide a near-zero residual error. There-
fore, spectrally distinct compounds may have measures of
spectral similarity that appear to improve from the consensus
to the EASI approach. Future applications of EASI should
therefore either be limited to spectrally similar compounds or
should incorporate a penalty when many of the expected
abundances measure zero or near zero.
To visualize and better understand the distributions of

spectral similarity scores for the different models, frequency
distribution curves of the MARs for the two models are
provided in Figure 3. All the KP spectra of cocaine are in blue
and all the KN spectra, including the cocaine diastereomers
and ecgonine methyl ester, are in red. Figure 3A shows that
there are several KN spectra with MARs between 5 and 10%
that fall within the range of MARs of the KP cocaine spectra.
Figure 3B shows that the distributions of MARs using EASI
overlap less, so binary classification results in fewer FPs and
FNs. At a threshold of ∼2% MAR, EASI results in no false
positives and 36 false negatives, most of which are external
validation cocaine spectra from the NIST archive from
unknown instruments. In both figures, the overlap in MARs
between KPs and KNs results from the cocaine diastereomers.
In the consensus approach, one cocaine spectrum had a MAR
that exceeded those of several spectra of ecgonine methyl ester
collected on the same instrument.
The areas under the ROC curves in Figure 3C are 0.9998 for

EASI and 0.9974 for the consensus approach. Although both
classifiers can easily distinguish most cocaine spectra from
most known negatives, EASI obviously provides better
discrimination in cases where the cocaine spectra contain
more variance from the training set, such as those in the
validation set that were collected on different instruments.
Figure 3D shows the precision−recall curve for the same data,
which again shows the improvements in precision for EASI
relative to the consensus approach.
Table 2 summarizes the NIST scores between the measured

ion abundances for the consensus approach and EASI. In both
approaches, some of the NIST scores for KNs of
pseudococaine exceed the scores of some KP cocaine spectra.
The spectral similarity of the diastereomers to cocaine
therefore causes an overlap in the distribution of NIST scores
for KNs and KPs, meaning that errorless classifications are not
possible.

If we assume the highly conservative threshold of zero false
positive identifications, the consensus approach using NIST
scores yields 179 FNs (59% false negative rate) at a threshold
of 996.9. In contrast, the EASI approach using NIST scores
yields zero FPs and 28 FNs (9.2% false negative rate) at a
threshold of 996.1. This head-to-head comparison of the two
approaches shows that EASI provides better abundance
predictions for KPs collected on different instruments than
the consensus approach. Binary classification of cocaine using
NIST scores of EASI abundances provided the lower error rate
of the two approaches, with a combined accuracy of 97.3% for
all 1019 identifications. NIST scores using the traditional
consensus cocaine spectrum approach provided an overall
accuracy of 82.4%, which masks the fact that more than half of
the cocaine spectra were incorrectly classified.
Population plots for the NIST Scores for the two models are

provided in Figure 4. All the KP spectra of cocaine are in blue
and all the KN spectra, including the cocaine diastereomers
and ecgonine methyl ester are in red. Figure 4A,B shows that,
for the consensus approach, there are several KN spectra with
NIST scores between 985 and 996 and dozens of KP cocaine
spectra with NIST scores between 975 and 990, which mostly
include the validation spectra from different instruments. The
population of known positives and negatives overlap severely
in the consensus approach. In contrast, the distribution of
NIST scores in Figure 4C,D using EASI is more condensed,
and there are only a handful of KP spectra from the validation
set with NIST scores less than 990. The areas under the ROC
curves (AUC) in Figure 4E are 0.9996 for EASI and 0.9954 for
the consensus approach. Although both classifiers can easily
distinguish most cocaine spectra from KNs that are not
diastereomers, EASI obviously provides better discrimination
between cocaine and its diastereomers. Figure 4F shows the
precision−recall curve for the same data, which again shows
the improvements in precision for EASI relative to the
consensus approach.
Table 3 summarizes the TPs, TNs, FPs and FNs for the

different models and different methods of spectral comparison.
The error rates are somewhat biased by the inclusion of the
training set with the test and validation sets, but EASI and the
consensus approach were treated similarly with the different
data sets, so the relative comparisons of EASI and the
consensus approach are still valid. Within each method of
spectral comparison, EASI results in more TPs and greater

Table 3. Summary of Binary Classification Figures of Merit for Various Measures of Spectral Similarity for EASI and the
Consensus Model for Cocaine Identification in the Absence of Retention Time Information Relative to the Cocaine Training
Seta

Dot product NIST score Euclidian distance MAR

Model Consensus EASI Consensus EASI Consensus EASI Consensus EASI Mahalanobis distance

Threshold 0.968 0.997 996.8 996.0 41.66 12.31 5.73 2.07 88.19
TPs 214 250 124 275 219 247 220 267 287
TNs 716 716 716 716 716 716 716 716 716
FPs 0 0 0 0 0 0 0 0 0
FNs 89 53 179 28 84 56 83 36 16
Sum 1019 1019 1019 1019 1019 1019 1019 1019 1019
FPR = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TPR = 70.0% 81.8% 51.8% 96.4% 72.3% 81.5% 72.6% 88.1% 94.7%
TNR = 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Accuracy 91.3% 94.8% 82.4% 97.3% 91.8% 94.5% 91.9% 96.5% 98.4%a

aOnly the 20 most abundant peaks in a spectrum are compared in each model, and the threshold is set to exclude FPs. Mahalanobis distances are
calculated for every spectrum relative the cocaine training set from Lab 1.
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overall accuracy than the consensus approach. Using the
Mahalanobis distances (to the training set) as a binary classifier
provides more TPs than any consensus approach or EASI
approach when the threshold is set at zero FPs. The population
plot and ROC curve in Figure 5 help visualize the distributions
and classification performance. At the threshold of zero FPs,
the Mahalanobis distance only predicted 16 FNs, for a FN rate
of 5.2%. The AUC for Mahalanobis distance in Figure 5B is
0.9998, which is more effective than the consensus approach,
but approximately equal to EASI. Like all the metrics studied
using EASI, Mahalanobis distance struggles to differentiate
several of the diastereomer spectra from a few of the external
validators of cocaine.
Although confusion matrices can be used to calculate

likelihood ratios (LR) or log likelihood ratios (LLR) as a
measure of the informative power of the methods,58,76,81 the
LR will be unique for each spectrum because spectra that are
further from the threshold will be more confidently assigned to
the correct group. Spectra closer to the threshold will be less
confidently and less accurately identified. Greater than 95% of
the KPs can be confidently and correctly identified as cocaine
without any FPs. Conversion of spectral comparison scores to
LRs would require kernel density estimations and computing
the extent of overlap of the continuous distributions at
different thresholds.76,82−85 Such calculations are beyond the
scope of the present proof-of-concept, but some example
likelihood ratios for the overall performance of the different
metrics are provided in Table S3 as an example. The likelihood
ratios are severely underestimated here because of the limited
number of KNs in the database. Translating error rates and
likelihood ratios to casework will require significantly more
validation than provided here, including the incorporation of
casework sample that are unequivocally found to be known
negatives and known positives. Future validation studies
should include mass spectra derived from casework samples,
which should include the variety of concentrations, cutting
agents, and matrix effects expected in practice.
Incidentally, one could also perform a Chi-squared test of

Mahalanobis distances as a test for spectral outliers relative to
the training set of KP cocaine spectra. A Chi-squared test using
19 degrees of freedom (a very conservative estimate) and p =
0.05 provides a critical value of 30.1, which would result in 170
of the cocaine spectra labeled as outliers relative to the training
set. The arbitrary threshold Mahalanobis distance of 88.19

results in zero FNs and only 16 FPs for a total accuracy of
98.4%.
The error rates and accuracies in Tables 3 and S3 for the 5

different measures of spectral comparisons reveal some
important outcomes, which may be generalizable to other
systems: (1) the Mahalanobis distance is an effective metric for
binary classification, (2) EASI outperforms the consensus
approach regardless of the spectral comparison approach, and
(3) EASI can be employed effectively with a wide variety of
spectral similarity measures. Indeed, EASI is not necessarily a
new way to compute spectral comparisons, it is a new way to
assess how well the abundances within a spectrum fit the
pattern of behavior (as defined by general linear models)
observed for known positives in a training set. The unique
feature of the general linear modeling employed here is that,
like any linear equation, they can be extrapolated beyond the
range of measured values of the training set to make accurate
abundance predictions for spectra of known positives from
different laboratories that are apparently spectrally distinct but
follow the expected linear behavior. Users can use their
preferred method of choice to compare EASI-predicted
abundances to the measured abundances in a query spectrum.
The comparisons provided above all make use of the 20

most abundant fragment ions in their comparisons. No attempt
was made to optimize or supervise the use of specific variables
to improve the identification performance. The models were
built naiv̈ely with respect to all negatives. However, as
mentioned in the introduction, the abundance ratios such as
m/z 94/96 and 152/155 are well-documented points of
differentiation between the two stereoisomers,54,55,80 so
emphasizing these variables in an identification algorithm
ought to improve the selectivity between cocaine and its
diastereomers. Using the residual errors (ε) between EASI
predictions and measured abundances as input variables into
binary logistic regression analysis, stepwise addition of the 20
variables resulted in a simple model that resolved all the
cocaine spectra from all the diastereomers with no errors. The
equation

=y 8100.2 85.2 1226.5 6182.6

501.5
152 198 272

303 (9)

yields y < 0.5 for all 303 spectra of cocaine and y > 0.5 for the
ten replicate spectra of the three diastereomers, pseudococaine,
allococaine, and pseudoallococaine, and therefore enables

Figure 5. Population plots for the Mahalanobis distance to the training set of 128 cocaine spectra for KPs and KNs (A) and a corresponding
receiver-operator characteristic (ROC) curve (B).
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errorless identification of cocaine using y = 0.5 as the
threshold. One must be cautious about extrapolating
probabilities from one study (i.e., this study) to casework,
but the goal of this current project is to demonstrate a
framework for maximizing the information in mass spectra
rather than providing one specific solution for one specific
drug. Cocaine and its diastereomers were used here because
their discrimination is such a difficult case. Still, the binary
logistical regression equation in eq 9 only requires 4 modeled
abundances to distinguish cocaine from its diastereomers, and
each of those abundances is easily computed from 4 linear
equations with fewer than ten terms each. As a reminder, the
GLM equations were built on 128 spectra from Lab 1 and
tested against 120 cocaine spectra from a different laboratory
and 55 cocaine spectra from the NIST archive, which includes
spectra collected on a variety of instruments dating back to the
1980s.62 The original GLMs were also naiv̈e with respect to
any known negatives.
Regarding the applicability of general linear modeling to

other substances and to tandem mass spectra, we have already
tested EASI on more than a dozen substances using EI-MS
data and more than a dozen substances using replicate tandem
mass spectra from a linear ion trap mass spectrometer and a
quadrupole-time-of-flight (Q-TOF) mass spectrometer. In all
cases, EASI provided superior abundance predictions and more
accurate identifications relative to the consensus approach.
Regarding the number of replicate spectra required to build

an effective model, the answer depends on many factors,
including the number of variables modeled, the spectral
similarity of the nearest known negative(s), and the variance
observed in the training set relative to the variance in the entire
population of known positives. In general, we have found that
the accuracy of spectral predictions scales approximately
linearly with the square root of the number of replicate
spectra in the training set, and about 30 spectra are typically
sufficient to provide notably better discriminating power than
the consensus approach. As with any algorithm, prediction
accuracies will be highest when the overall variance in replicate
spectra is minimized and when the training set incorporates all
the variance of the population. In real applications, where
those ideals are not achievable, EASI provides a unique
approach to extrapolate beyond a training set and make
interlaboratory spectral comparisons that are more reliable
than existing approaches.
At present, it takes several hours to manually process the

data and validate the various general linear models for a
substance. In the future, such model generation and validation
could be automated through scripting to complete in seconds.
However, once linear models are developed using a robust
training set for a substance, they should not need to be
recalculated again. Therefore, the coefficients for a substance
(such as those provided in Table 2 of our previous
manuscript), should be valid in perpetuity. Once developed,
applying n linear models to a query spectrum could be readily
accomplished in an Excel spreadsheet, where one could also
compute measures of spectral similarity and corresponding
probabilities of compound identification in a fraction of a
second.

■ CONCLUSION
The newly developed general linear modeling in EASI
improves upon the exemplar approach to substance identi-
fication. EASI considers the fact that normalized ion

abundances in a mass spectrum are not independently variable
but correlate or anticorrelate with one another in approx-
imately linear fashions according to QET/RRKM theories.
The multivariate models typically explain more than 90% of
the variance in replicate spectra, and the models can be used to
predict ion abundances with residuals that are typically 4 times
smaller than the consensus approach, which uses the mean
spectrum of all the known positives in the database as the true
or predicted abundances. Five different measures of spectral
similarity and dissimilarity were compared between EASI and
the consensus approach, and in every case EASI provided
fewer FNs when the threshold was set to zero or one FP. ROC
curves and precision−recall curves showed that binary
classification using EASI was superior to the consensus
approach for every metric.
Several models using EASI, including mean absolute

residuals and NIST scores, provided FN rates of less than
5% with no FPs. Supervised classification of the residuals from
EASI predictions were built using binary logistic regression.
The binary logistical equation for resolving cocaine from its
diastereomers only requires the residuals from four modeled
ion abundances to provide errorless identifications of the
tested spectra. These findings include more than 175 test and
validation spectra of cocaine collected in more than a dozen
laboratories, over more than three decades, on unknown
instruments, without retention time information, and with 10
spectra of three diastereomers that differ only in the
stereochemistry of two chiral centers. Ongoing work
demonstrates that EASI is equally well suited to intra- and
interlaboratory comparisons of tandem mass spectra from ESI-
MS/MS and DART-MS/MS instruments.
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