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The combination of helium charge transfer dissociation mass spectrometry (He–CTD–MS) with ultrahigh performance liquid chromatography
(UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on
the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of
isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He–CTD–MS conditions.
Results demonstrate that He–CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from
both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He–CTD produces informative
fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and
ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among
sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He–CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses
and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving
most of the labile Neu5Ac and fucose groups.
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Introduction

Human breast milk is nature’s gold standard of nutrition
for newborns (Remoroza et al. 2018). Breast milk contains
6–20 g/L of nonconjugated carbohydrates which are known
as human milk oligosaccharides (HMOs) (Ninonuevo and
Lebrilla 2009; Bao et al. 2013; Auer et al. 2021). HMOs
comprise >130 distinct structures and are the third most
abundant component in breast milk after lactose and lipids
(Bao et al. 2013; Nijman et al. 2018; Auer et al. 2021).
HMOs can be categorized as neutral or acidic in nature
depending on their monosaccharide composition (Plaza-Díaz
et al. 2018). Neutral HMOs are further categorized into
fucosylated and N-containing HMOs, the latter of which con-
tains N-acetylglucosamine (GlcNAc) at the terminal positions
(Plaza-Díaz et al. 2018). Acidic HMOs contain sialic acid
(Neu5Ac) at one or both termini and represent 12%–14% of
the total HMO content (Plaza-Díaz et al. 2018). HMOs help
strengthen the immune system in infants, and they can prevent
the adhesion of pathogens to epithelial cells, which blocks
the initial step of infection (Ninonuevo and Lebrilla 2009;
Remoroza et al. 2018). HMOs also serve as prebiotics that
promote the growth of beneficial gut bacteria (Ninonuevo and
Lebrilla 2009). Specific HMOs, including 2′-fucosyllactose
(2′FL) and 3/6′-sialyllactose (3′SL; 6′SL), are beneficial to the
brain development of infants (Ruhaak and Lebrilla 2012a;
Berger et al. 2020; Gu et al. 2021).

HMOs can be seen with linear or branched structures
of 3–10 monosaccharide constituents (Bao et al. 2013)
and have a core structure at the reducing end commonly

made with lactose (Galβ1-4Glc) or N-acetyllactosamine
(Galβ1-4GlcNAc) (Remoroza et al. 2018; Auer et al. 2021).
Elongation occurs through the addition of β-1,3- or β-
1,6-linked lacto-N-biose (Galβ1-3GlcNAc, type I) or N-
acetyllactosamine (Galβ1-4GlcNAc, type II) disaccharide
component to the core structure. HMOs with linear and
branched structures are named as “para”-HMOs and “iso”-
HMOs, respectively (Bode 2012; Plaza-Díaz et al. 2018).
Chain branching is mainly initiated with the introduction
of disaccharide units to the main chain via β-1,6 linkages
(Plaza-Díaz et al. 2018). The core and the elongated structures
can be further modified with α-1,2-, α-1,3- or α-1,4-linked
fucose (Fuc) or α-2,3- and/or α-2,6-linked Neu5Ac units,
which results in a collection of both structural and linkage
isomers (Bode 2012; Plaza-Díaz et al. 2018; Auer et al. 2021).

The biological activity and health benefits of HMOs
depend on the details of the linkage patterns, the branching
positions, and sites of modification, so a wide range of
analytical techniques must usually be incorporated to fully
characterize and quantify the different HMOs. Some of the
key techniques that are widely used for HMOs analysis
include size-exclusion chromatography (Marino et al. 2011;
Grabarics et al. 2017), liquid chromatography (LC) (Austin
and Bénet 2018; Remoroza et al. 2018), reversed-phase high-
performance chromatography (Leo et al. 2010), high-pH
anion-exchange chromatography (Gu et al. 2021), porous
graphitized carbon (Hong et al. 2014; Gu et al. 2021),
hydrophilic interaction liquid chromatography (HILIC)
(Marino et al. 2011; Remoroza et al. 2018), capillary
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electrophoresis (Bao and Newburg 2008; Galeotti et al.
2014), micellar electrokinetic chromatography (Porfirio et al.
2020), nuclear magnetic resonance (NMR) spectroscopy
(Van Leeuwen et al. 2014), and mass spectrometry (MS)
(Ninonuevo and Lebrilla 2009; Ruhaak and Lebrilla 2012b;
Remoroza et al. 2018).

Offline and online MS profiling of HMOs have been con-
sidered as key techniques in characterizing HMOs, mainly
due to the speed and ability to identify molecular masses
and structural information (Adamson and Håkansson 2007).
Offline-MS techniques, such as matrix-assisted laser desorp-
tion (MALDI)/ionization time-of-flight MS, are widely used
for HMO characterization and are effective in distinguishing
α-2,3 and α-2,6-sialylated isomers via postsource decay frag-
mentation (Von Seggern et al. 2003; Nie et al. 2012). Generally
speaking, MALDI can tolerate high salt concentrations in the
samples, but MALDI ionization tends to cause the unwanted
loss of labile Neu5Ac groups, so it is sometimes limited in
its application to HMOs (Von Seggern et al. 2003). These
drawbacks can be overcome by performing suitable purifi-
cation procedures and by using optimized matrices, which
add complexity to the experimental workflow (Selman et al.
2012).

Electrospray ionization (ESI) and nano-ESI are useful in per-
forming online-MS analysis for both derivatized and under-
ivatized HMOs (De Leoz et al. 2019). Online separation tech-
niques coupled with tandem MS (MS/MS) detection enable
deeper insight into the structural characteristics of complex
samples (Han and Costello 2011; Oursel et al. 2017). Gly-
cosidic fragments (B/Y and C/Z) are produced when C-O
glycosidic bonds are broken between 2 neighboring monosac-
charide residues (Domon and Costello 1988). Cross-ring frag-
ments (A/X) are produced when C-C or C-O bonds are broken
within a monosaccharide ring (Domon and Costello 1988).
Cross-ring cleavages tend to be less common because they
require breaking 2 covalent bonds to be observed. Glyco-
sidic fragments provide details about the composition and
sequence of an oligosaccharide, but cross-ring fragments can
provide details about the location of sugar modifications—
like methylation, acetylation, and sulfation—and linkage posi-
tions between sugar residues (Domon and Costello 1988;
Han and Costello 2011). Different MS/MS techniques have
been involved in HMOs analysis and they have demonstrated
characteristic features to each technique.

Collision-induced dissociation (CID) produces glycosidic
cleavages and a few cross-ring cleavages of native HMOs
(Mank et al. 2019). Even though CID can provide valuable
diagnostic fragments (De Leoz et al. 2019; Mank et al. 2019),
CID also enables rearrangements, consecutive, internal frag-
ments and multiple neutral losses—such as H2O and CO2—
which complicate the product ion spectra (Ernst et al. 1997;
Schaller-Duke et al. 2018; De Leoz et al. 2019; Mank et al.
2019). CID with metalated HMOs provides more structurally
informative fragments relative to their protonated equivalents
(Adamson and Håkansson 2007; Han and Costello 2011;
Schaller-Duke et al. 2018), and high-energy collision-induced
dissociation can result in more cross-ring cleavages compared
to conventional CID (Han and Costello 2011).

Electron-based ion activation methods, such as electron
transfer dissociation (ETD) (Han and Costello 2011), negative
electron transfer dissociation (NETD) (Wolff et al. 2010), elec-
tron capture dissociation (ECD) (Liu and Hakansson 2011),
electron-induced dissociation (Wolff et al. 2008), electronic

excitation dissociation (Tang et al. 2018), and electron detach-
ment dissociation (EDD) (Adamson and Håkansson 2007),
have all been applied in the MS/MS analysis of oligosac-
charides. These techniques have generally reduced the loss
of labile modifications relative to CID, and they generally
provide better sequence coverage of oligosaccharides relative
to CID (Schaller-Duke et al. 2018). Even though the electron-
based ion-activation techniques are effective in the structural
characterization of HMOs, most of these techniques are lim-
ited to Fourier-transform ion cyclotron resonance mass ana-
lyzers, whose expense limits widespread adoption (Adamson
and Håkansson 2007; Han and Costello 2011).

Photon-based MS/MS dissociation methods, including
infrared multiphoton dissociation (IRMPD) and ultraviolet
photodissociation (UVPD), have created interest for the char-
acterization of HMOs due to their ability to produce an array
of informative cross-ring cleavages in a shorter timescale than
most electron-based activation techniques (Ko and Brodbelt
2011). IRMPD provides similar results to CID and can be used
as a complementary method to CID to gather structural details
for HMOs (Schaller-Duke et al. 2018). UVPD is capable of
producing diverse fragment ions, including cleavages within
Neu5Ac, and the formation of UVPD-specific 4,5X ions—even
in the absence of derivatization—is highly beneficial in studies
involving Neu5Ac (Devakumar et al. 2007; Wilson and
Brodbelt 2008; Ko and Brodbelt 2011). Derivatization plays
a significant role in UVPD analysis, which can directly affect
the native structure analysis of oligosaccharides (Devakumar
et al. 2007; Wilson and Brodbelt 2008; Ko and Brodbelt 2011;
Ropartz et al. 2014).

Helium charge transfer dissociation (He–CTD) is an emerg-
ing ion-activation technique that shows promising results for
oligosaccharides (Ropartz et al. 2016, 2017; Buck-Wiese et al.
2020; Pepi et al. 2020), peptides (Hoffmann and Jackson
2014), proteins (Li et al. 2018), and lipids (Li and Jackson
2017). He–CTD builds on the work of Schlathölter’s group
and Zubarev’s group (Bari et al. 2010, 2011; Chingin et al.
2014) and uses a kiloelectronvolt beam of helium cations
to ionize and fragment the precursor ions (Hoffmann and
Jackson 2014; Sasiene, Mendis, Jackson et al. 2021). Like
UVPD and some electron-based methods, He–CTD produces
a variety of structurally informative A/X cross-ring cleavages
(Ropartz et al. 2016, 2017; Buck-Wiese et al. 2020; Pepi et al.
2020; Sasiene, Mendis, Jackson et al. 2021; Sasiene, Mendis,
Ropartz et al. 2021; Sasiene, Ropartz et al. 2021). Buck-
Weise et al. showed that He–CTD can be used to determine
the connectivity patterns of β-1,3- and β-1,4-linked native
glycans, which is beneficial in linkage isomer differentiation
(Buck-Wiese et al. 2020). More recently, ultrahigh perfor-
mance liquid chromatography (UHPLC)–He–CTD–MS has
been successfully used to analyze a range of complex oligosac-
charides, including highly methylated pectins and highly sul-
fated carrageenan mixtures (Mendis et al. 2021a, 2021b).
These studies have shown that UHPLC–He–CTD–MS is capa-
ble of providing a series of unambiguous fragments from
both the reducing and nonreducing ends, which has aided in
the identification of site-specific modifications and isomeric
structures of oligosaccharides in complex mixtures (Mendis
et al. 2021a, 2021b).

The current work employs UHPLC–He–CTD–MS for the
structural determination of a series of neutral and acidic
HMOs, including LNFP I, LNFP II, LSTa, LSTb, LSTc, and
disialyllacto-N-tetraose (DSLNT). The structures are shown
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Milk oligosaccharides by UHPLC–He–CTD–MS 485

Fig. 1. A brief explanation of HMO compositions investigated in this work: a) neutral oligosaccharides and b) acidic oligosaccharides.

in Fig. 1. Results show that He–CTD produced more struc-
turally informative cross-ring fragments than CID and that
spectral acquisition rates are fast enough to handle complex
mixtures of HMOs. The work demonstrates that He–CTD is a
viable approach to high energy, radical-induced fragmentation
of oligosaccharides, even when they are in the 1+ charge state
and contain labile and acidic N-acetylneuraminic acid/sialic
acid groups.

Results and discussion

First, we developed an optimized HILIC separation condi-
tion for a relatively simple synthetic mixture of HMOs. The
mixture contained 2 neutral lacto-N-fucopentaoses (LNFP I
and LNFP II), 3 acidic sialyllacto-N-tetraoses (LSTa, LSTb,
and LSTc), and an acidic DSLNT. The standard mixture was
selected because the components have been relatively well
characterized by other novel methods of tandem MS and
because they contain a variety of linkage patterns and modifi-
cation sites of the labile sialic and fucose groups. Chromato-
graphic separation was performed using the HILIC technique
and the extracted ion chromatogram, as shown in Fig. 2,
illustrates the elution profile of the HMO mixture.

Both the neutral and acidic HMOs show almost baseline
separation under the HILIC conditions, which is consistent
with the work of others (Marino et al. 2011; Grabarics et al.
2017; Remoroza et al. 2018). Neutral HMOs, such as LNFP
I and II, elute first at 15.0 and 16.0 min (Marino et al. 2011;
Remoroza et al. 2018). Neutral HMOs are nonsialylated
compounds and are less polar than the acidic HMOs used
in this study. Acidic HMOs, such as LSTa, LSTb, and LSTc,
elute, respectively, at 16.2, 16.8, and 17.4 min. Acidic HMOs
contain sialylated structures with additional carboxylic acid
group(s), which display higher polarity compared to neu-
tral oligosaccharides and elute later under HILIC conditions.
Finally, DSLNT, which contains 2 Neu5Ac groups with a total
of 2 carboxylic acid groups, is the largest in the size and has
the highest polarity in the HMOs mixture; DSLNT therefore
elutes last at 19.6 min.

After the HILIC separation, HMO compounds were ana-
lyzed with either He–CTD or CID. The observed product
ions were annotated according to Domon and Costello, and
the largest branch in the oligosaccharide structure represents
by the symbol α (Domon and Costello 1988). The 2 neutral
oligosaccharides, LNFP I and LNFP II, are structural isomers
with different fucosylation positions (Pfenninger et al. 2002a,
2002b; Mank et al. 2019). For both LNFP I and LNFP II, the
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486 P M Mendis and G P Jackson

Fig. 2. Extracted ion chromatogram of HILIC separation of the complex mixture of milk oligosaccharides.

sodium adducted ion provided the most abundant precursor
at mass-to-charge ratio (m/z) 876.3, so it was selected for
MS/MS analysis. Sodium was not intentionally added to any
of the mobile phases.

Figures 3a and 4a show the CID spectra for LNFP I and
II, respectively. Figures 3b and 4b show the He–CTD spectra
of the same precursors under otherwise-identical conditions.
CID produced an array of glycosidic fragments in LNFP I,
including many unambiguous B/Y and C/Z cleavages. The
observed fragments are spread throughout the oligosaccharide
backbone. Compared to LNFP I, LNFP II provided fewer
unambiguous fragments with CID, and they are localized in
between GlcNAc2 and Gal3 units. CID is able to produce
diagnostic glycosidic fragment ions for each neutral HMO,
including the C2 fragment at m/z 349.0 (with LNFP I), and
the C2-Z3α fragment at m/z 372.1 (with LNFP II), both of
which comply with previous experiments using CID (Pfen-
ninger et al. 2002a, 2002b; Mank et al. 2019). Both the
diagnostic fragment ions provide valuable information on the
composition of the nonreducing ends and are helpful in the
preliminary differentiation of LNFP I and LNFP II (Mank
et al. 2019). In addition, CID is able to produce unambiguous
cross-ring fragments on the GlcNAc unit in both LNFP I and
II (2,4X2 and 0,2X2, respectively), but these fragments provide
limited additional structural information.

In contrast to CID, He–CTD spectra for LNFP I and LNFP
II, as shown in Figs. 3b and 4b, respectively, contain rich gly-
cosidic and cross-ring fragments. The fragment ion maps inset
in the figures shows that He–CTD produces several unam-
biguous fragments throughout the structures. Both LNFP I
and II produced the diagnostic glycosidic products C2 (m/z
349.1) and B2-Y3α /C2-Z3α at (m/z 372.0), respectively, which
help to distinguish each isomeric structure, as described by
Mank et al. using CID. (Mank et al. 2019). He–CTD exhibits
unambiguous cross-ring fragment ions, such as 1,5An, 1,5Xn,
and 0,2Xn, with both LNFP I and II, and these informative
fragments provide information on the location of the labile
fucose unit and provide information on the linkage position
between the monosaccharide units. The 1,5An, 1,5Xn, and
0,2Xn fragments have been previously observed with UHPLC–
He–CTD–MS for carrageenan oligosaccharides, and these
cross-ring fragments were useful for localizing the labile sul-
fate modification positions on the oligosaccharide structures
(Mendis et al. 2021a).

The presence of a Fuc1-Gal2-disaccharide unit at the nonre-
ducing end in LNFP I is explained by the C2 ion at m/z 349.1.
The Y4 and 1,5X4 fragment ions also help narrow the fucose
location to the terminal position. In LNFP II, the B2-Y3α /C2-
Z3α fragment at m/z 372.0 indicates the presence of a Gal-
GlcNAc-Fuc unit at the nonreducing end, and the structural
details obtained from the 1,3A2, 0,2X2 and 1,5X3α fragment
ions suggest that the terminal Gal1 is attached to GlcNAc2
via a 1,3-linkage. The 1,3A2, 1,5X2, and 1,5X3β fragment ions
suggest that the branched fucose unit is attached to GlcNAc
via a 1,4- or 1,6-linkage (Adamson and Håkansson 2007).
The remaining product ions from LNFP I and II show that
He–CTD is capable of preserving the labile fucose residue
on a majority of the product ions and that He–CTD is able
to evade the fucose migration that has plagued earlier CID
studies (Wuhrer et al. 2006; Aldredge et al. 2013; Mank et al.
2019).

The acidic HMOs—LSTa, LSTb, and LSTc—provide a chal-
lenging family of sialylated isomers to resolve. The unam-
biguous fragment maps and spectra for each sialylated isomer
with both CID and He–CTD are shown in Figs. 5–7 and
Supplementary Figs. S1–S3. Among these oligosaccharides,
LSTa and LSTc display linkage isomerism to each other, and
LSTb shows structural isomerism to LSTa and LSTc (De Leoz
et al. 2019). As observed in the unambiguous fragmentation
maps for CID of three isomers in Figs. 5a–7a, glycosidic
cleavages are dominant in CID and the cross-ring cleavages
are infrequent and/or unhelpful. CID resulted in a series of
unambiguous glycosidic cleavages from both the reducing and
nonreducing termini with both LSTa and LSTc.

The CID fragments B4 and Y4 indicate the presence of
terminal sialic acid and glucose units at nonreducing and
reducing ends, respectively. Fragment pairs of B2-Y4, B2-
B3, and B3-B4 provide the D-galactose-GlcNAc-D-galactose
monosaccharide sequence in LSTa and LSTc. For LSTb, CID
resulted in fewer unambiguous glycosidic cleavages, which
makes the monosaccharide composition determination more
difficult to assign. The glycosidic fragments C2 and Y3α (Sup-
plementary Fig. S2a) indicate that the labile sialic acid unit
tends to be absent with CID, and this neutral loss increases the
uncertainty in the structural determination process (De Leoz
et al. 2019).

In addition to the glycosidic cleavages, the CID spectra in
Figs. 5a–7a demonstrate that there are several unambiguous
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Fig. 3. HILIC–UHPLC–MS/MS spectra of LNFP I at 15.0 min collected in positive ion mode using a) CID and b) He–CTD. The insets show only the
unambiguous annotated product ions.

cross-ring cleavages (2,4An, 2,5Xn, and 0,2Xn) at the terminals
of LSTa-c (Adamson and Håkansson 2007; De Leoz et al.
2019). The unambiguous 2,4A5 and B4 fragments, which are
observed in LSTa and LSTc, provide details about the reducing
end (De Leoz et al. 2019). For LSTb, the 0,4A2 fragment at
m/z 374.0 is the only unambiguous cross-ring fragment which
is observed with CID. The presence of the 0,4A2 cross-ring
fragment ion is advantageous because it indicates the attach-
ment of Neu5Ac to C-6 on the GlcNAc unit (Adamson and

Håkansson 2007; Ko and Brodbelt 2011). In short, the level
of detail provided by CID for these 3 isomers is not sufficient
to differentiate them with confidence. Whereas differentiation
can be accomplished by considering their elution times, the
elution times of standards may not always be feasible when
elucidating structures in natural samples.

The He–CTD MS/MS fragmentation maps for LSTa, LSTb,
and LSTc are shown in Figs. 5b–7b, respectively. As shown in
the fragmentation maps, He–CTD produces more glycosidic
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Fig. 4. HILIC–UHPLC–MS/MS spectra of LNFP II at 16.0 min collected in positive ion mode using a) CID and b) He–CTD. The insets show only the
unambiguous annotated product ions.

fragments for all three HMOs, and the unambiguous glyco-
sidic cleavages help to understand the monosaccharide com-
position of the oligosaccharides in a similar fashion in CID. In
addition to the glycosidic fragments, He–CTD provides many
cross-ring fragments, including 0,2An, 0,3An, 0,4An, 1,3An,
1,5An, 2,4An, 2,5An, 3,5An, 0,2X3, 1,4Xn, 1,5Xn, and 2,5Xn.
These structurally informative cross-ring fragments are bene-
ficial in determining the linkage and branching patterns of the
three isomers. As an example, He–CTD produced 2,4A3, 1,3A3,

and 0,2X3 product ions, and these ions are useful in identifying
the 1,3-linkage between Gal2 and GlcNAc3. Similarly, the
fragments 1,5X2 and 2,5A3 help localize the −NHCOCH3
active group on GlcNAc in LSTa to the C2 position. Such
details are not possible with CID because of the limited cross-
ring cleavages (De Leoz et al. 2019). The linkage-related
information has been previously observed with UHPLC–He–
CTD–MS studies performed with highly methylated pectin
and carrageenan oligosaccharides, which helps to identify the
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Fig. 5. HILIC–UHPLC–MS/MS product ion maps of LSTa at 16.2 min collected in positive ion mode using a) CID and b) He–CTD. The product maps show
only the unambiguous annotated product ions.

1,4-linkage patterns between monosaccharide units and to
localize the 6-O-methyl esterification and 4-O-sulfation sites
on the oligosaccharides in the complex mixtures (Mendis et al.
2021a, 2021b).

The He–CTD product ion spectra for acidic HMOs also
provide valuable information on the sialic acid linkage posi-
tion, which is advantageous for isomer differentiation. The
He–CTD spectrum for LSTa (Supplementary Fig. S1) indi-
cates the presence of possible 1,3A2/2,4A2 cross-ring ions at
m/z 374.2, which have previously been observed with EDD
for doubly deprotonated LSTa (Adamson and Håkansson
2007). The 1,3A2/2,4A2 cross-ring ions suggest that Neu5Ac
is attached to Gal2 at the C3 or C4 positions. In the He–CTD
product ion spectrum for LSTb (Supplementary Fig. S2), the
0,3A2 and 0,4A2 fragments observed at m/z 374.2 and m/z
384.2, respectively, have been reported with ETD of Mg2+-
adducted LSTb, with UVPD of deprotonated LSTb, and with
EDD of doubly deprotonated LSTb (Adamson and Håkans-
son 2007; Han and Costello 2011; Ko and Brodbelt 2011).
These fragments provide details of the C6 linked Neu5Ac
unit. For LSTb, He–CTD provides sufficient detail to localize
the Neu5Ac attachment, and the presence of 1,5X3β , 0,2A2,
and 0,3A2 fragments confirm the presence of 1,3-linkage
among the Gal-GlcNAc2 unit on the reducing terminus. When
comparing the He–CTD spectra of LSTc with LSTb, LSTc fol-
lows a similar fragmentation pattern at the Neu5Ac location
(Supplementary Fig. S3). The fragments 0,3A2 and 0,4A2 are
also observed with LSTc, which again confirm the C6 position
of the Neu5Ac residue to the Gal2 unit.

Some of these linkage-related fragments show product ions
that are isobaric with different product ions from other
isomers. Therefore, to be confident with the structural
assignments, additional scrutiny is required. Table 1 shows
a comparison of additional diagnostic peaks that correspond

to each isomer. The peaks observed at m/z 415.1 1,4X2(H)-
Na, m/z 528.2 Z2(H)-Na/0,2A3-HCOONa, and m/z 546.2
Y3(H)-Na are present above the minimal S/N level only in
LSTa. Among those unique product ions, Y3(H)-Na and
1,4X2(H)-Na help to differentiate the unbranched structure
of LSTa relative to LSTb. For LSTb, the peaks at m/z 517.2
B2-Gal inform the presence of GlcNAc and Neu5Ac units
in the nonreducing end, and the peak at m/z 292.1 (B1α)
(Supplementary Fig. S2b) locates the Neu5Ac unit to the
terminal position. Peaks observed at m/z 859.3 and m/z
399.1 are dominant only in LSTb, but further investigation
needs to be performed with heavy 18O labeling to break
the ambiguity of the peak assignments. Labeling with heavy
18O has been used successfully for He–CTD experiments for
oligosaccharides in the past to differentiate ions originated
from reducing and nonreducing termini (Ropartz et al. 2016).
The dominant peak at m/z 384.2 0,3A2

′′-H2O in LSTb
and LSTc gives the information that LSTb and LSTc have
a Neu5Ac attached at either C4 or C6 position, and this
fragment is absent in LSTa. Peaks observed at m/z 454.0
B2(H)-Na in both LSTa and LSTc indicate that LSTa and
LSTc have unbranched nonreducing terminals compared to
LSTb. With He–CTD, the D-galactose and GlcNAc residues
at the nonreducing end in each isomer undergo multiple cross-
ring cleavages. These extensive fragmentation patterns may be
related to the elevated electron density in the acidic Neu5Ac
residue and the increased propensity for ionization during
cation–cation activation (Bari et al. 2010, 2011; Sasiene,
Mendis, Jackson et al. 2021). Enhanced activation on the
acidic, nonreducing terminus might also be related to the
propensity for the adducting Na+ ion to bind with Neu5Ac
residue (Han and Costello 2011).

CID and He–CTD of disialylated branched oligosaccharide
(DSLNT) are investigated, as shown in Supplementary
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Fig. S4. In CID, fewer unambiguous glycosidic and cross-ring
cleavages were observed, as expected. Similar to the mono-
sialylated HMOs, the majority of the cross-ring cleavages—
e.g. 0,2X3α and 2,5X3α—occurred only on Gal2 units next
to the Neu5Ac group. The presence of a B2/Y3α fragment

provides informs us that one of the Neu5Ac groups is
located at the nonreducing end. The presence of a B3 ion
and B2/Y3α fragment helps to locate the second Neu5Ac
group on the GlcNAc3 unit. The lack of unambiguous
cross-ring and glycosidic cleavages at the terminal sites

Table 1. Comparison of specific regions of He–CTD spectra to show structurally distinct product ions for the isomers LSTa, LSTb, and LSTc.

Continued
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Table 1. Continued

limits the structural information on the reducing and
nonreducing ends.

In contrast to the CID results summarized above, He–CTD
shows unambiguous glycosidic cleavages throughout the main
branch, which helps to identify the monosaccharide sequence
of the DSLNT. Unlike CID, He–CTD produces a majority of
its unambiguous cross-ring cleavages on the GlcNAc at the
center region. The unambiguous 2,4A3 and 1,5X2 cross-ring
fragments enable the identification of the possible C3 or C6
attachment of the attached Neu5Ac group on the GlcNAc
unit, which is a major advantage for He–CTD compared
to CID. The 2,4A and 1,5X cross-ring cleavages have been
previously reported with He–CTD for branched xyloglucans
and, with the help of additional cross-ring fragments, such as
2,5A and/or 2,5X, 1,4- and 1,6-linked branching patterns have
been identified (Sasiene, Ropartz et al. 2021).

These results demonstrate the ability to perform HILIC–
UHPLC–He–CTD–MS for effective analysis of a complex
mixture of HMOs. He–CTD is capable of providing impor-
tant cross-ring cleavages that help to differentiate linkage
isomers and structural isomers in both neutral and acidic
milk oligosaccharides. The beneficial cross-ring fragments
observed with He–CTD show commonality with other radical
and high energy activation techniques like ETD, EDD, and

UVPD. Unlike some of the previously cited work, all the prod-
uct ion spectra collected with He–CTD in this study are based
on underivatized HMOs. He–CTD has a modest advantage of
being applicable to the analysis of native HMOs. In addition,
He–CTD is able to preserve the majority of the Neu5Ac and
fucose residues. These findings give the impression that He–
CTD is a valuable tool that can be used in the native structure
analysis of oligosaccharides.

Materials and methods

Reagents and oligosaccharides

Ammonium formate was purchased from Oakwood Chem-
ical (Estill, SC, USA). Formic acid (FA) and LC/MS grade
acetonitrile (ACN) were purchased from ThermoFisher Sci-
entific (Fair Lawn, NJ, USA). Ultrapure 18 MΩ water was
obtained from a Milli-Q apparatus from Millipore (Burling-
ton, MA, USA). Individual samples of sialylacto-N-tetraose a
(LSTa), sialylacto-N-tetraose b (LSTb), sialylacto-N-tetraose c
(LSTc), DSLNT, lacto-N-fucopentaose I (LNFP I), and lacto-
N-fucopentaose II (LNFP II) were purchased from Biosynth
Carbosynth (San Diego, CA, USA). The complex mixture
of HMOs was prepared from the equimolar solutions of
individual HMO samples.
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Fig. 6. HILIC–UHPLC–MS/MS product ion maps of LSTb at 16.8 min collected in positive ion mode using a) CID and b) He–CTD. The product maps show
only the unambiguous annotated product ions.

HILIC separation

Chromatographic separation was performed on a Shimadzu
Nexera X2 UHPLC system (Kyoto, Japan) using an Accucore
150-Amide-HILIC column (2.6 μm, 2.1 mm × 100 mm) from
ThermoFisher Scientific. The composition of the 2 mobile
phases was: (i) 99.9% ACN with 0.1% (v/v) FA and (ii)
10 mmol/L ammonium formate with 0.1% (v/v) FA. A binary
gradient was used for the separation with a flow rate of 0.4
mL/min and column oven temperature of 50 ˚C. From 0–20
min, the composition was changed in a linear mode from 15%
to 35% of mobile phase B. From 20–25 min, the gradient was
changed in a linear mode from 35–75% mobile phase B. At 25
min, the column was re-equilibrated at 15% of mobile phase
B for 5 min.

Online He–CTD

Online He–CTD was performed on a modified Bruker
amaZon ETD quadrupole ion trap from Bruker Daltonics
(Bremen, Germany), as described previously (Mendis et al.
2021a, 2021b). Briefly, a saddle field fast ion source from
VSW/Atomtech (Macclesfield, UK) was fixed above a 3-mm
hole in the ring electrode of the 3D ion trap and was connected
to a variable leak valve (Model 203, Granville-Phillips)

to control the flow of helium gas through the source. The
flow of helium was indirectly measured from the ion gage
in the main vacuum chamber and was kept at about ∼1.2 ×
10−5 mbar. The ion source was connected to an economical
home-built system that employs a 10-kV Ultravolt HVA series
high-voltage power supply (Advanced Energy, Denver, CO,
USA). The +5.5 kV high voltage from the Ultravolt UHA was
pulsed from ground to high with a rise time as fast as 150 ns
by using a Behlke 101-03 switch (Behlke, Billerica, MA, USA).
A TTL signal was taken from the MS2 event of the Bruker
amaZon from pin 28 of the auxiliary control port and was
sent to an Agilent 33250A arbitrary function generator (AFG,
Keysight Technologies, Santa Rosa, CA, USA) to provide an
independently variable delay and pulse width. A DS1054
digital oscilloscope (Rigol, Beaverton, OR USA) compared
the trigger waveform from the AFG with the scan function
of the Bruker amaZon to ensure that the high-voltage pulses
coincided with the desired storage period of the scan function.
The saddle field fast ion source has an 85% conversion
efficiency, so the 5.5 kV pulse provided helium cations with a
kinetic energy of approximately 4.7 keV. The saddle field fast
ion source pulse was matched with the fragmentation portion
of the scan function of the instrument with the CID amplitude
set to 0 V.
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Fig. 7. HILIC–UHPLC–MS/MS product ion maps of LSTc at 17.4 min collected in positive ion mode using a) CID and b) He–CTD. The product maps show
only the unambiguous annotated product ions.

UHPLC–HILIC–He–CTD–MS

The effluent from the UHPLC was connected to the standard
Bruker Apollo ESI source (Billerica, MA). Capillary voltage
and end cap voltage were set to +4,500 V and −700 V.
Nebulizer pressure was set to 30 psi, the dry gas flow rate
was set to 10 L/min and the dry temperature was at 340 ◦C.
Experiments were conducted in the data-dependent acquisi-
tion (DDA) mode from m/z 250–1,500. The most abundant
charge state of each analyte was chosen as the precursor ion
with a window of 8 Da. The CID collision energy was set at
0 V when He–CTD was activated. The ion gun was pulsed on
for 50 ms, and the MS2 event, which includes the He–CTD
activation time followed by a storage time, was set to 200 ms
and a low mass cut-off of 27%. As a comparison, data of
the same HMO mixture using the same UHPLC conditions
were also collected using traditional CID-MS/MS on the same
instrument with CID collision energy at 0.40 V and 50 ms
activation time. For CID-MS/MS, smart fragmentation was
on and set to 80%–120%.

Data analysis

Raw data were transformed in Bruker Compass DataAnalysis
4.0 SP4 software and were further processed using Microsoft
Excel (Microsoft, Redmond, WA, USA). The peaks in the
deconvoluted spectra were chosen manually based on their

signal-to-noise ratio, isotope envelope distribution, and frag-
mentation patterns. Product ion assignments for CID and He–
CTD were achieved using an in-house analysis of an HMO
database and Glycoworkbench software. ChemDraw 19.1
(PerkinElmer, Walthman, MA, USA) was used for chemical
structure illustrations.

Conclusions

The utility of UHPLC–He–CTD–MS has been demonstrated
for the characterization of a complex mixture of neutral and
acidic HMOs. Analytes in the mixture consisted of DP5 and
DP6 linear and branched structures with labile Neu5Ac (sialic
acid) and fucose residues. Our results demonstrate that He–
CTD can perform effectively with the fast timescales and low
sample loads required for HILIC–UHPLC separation and that
it provides spectra with adequate signal-to-noise to determine
the structural characteristics for HMOs. He–CTD product ion
spectra contained a series of cross-ring and glycosidic cleav-
ages, which allow an unambiguous identification of structural
and linkage isomers in the HMOs mixture. The presence
of 0,3A2 and 0,4A2 fragments in He–CTD are also observed
with ETD, EDD, and UVPD and enable the differentiation
of the α-2,3- versus α-2,6-linked Neu5Ac residues present
among sialyllacto-N-tetraoses. The use of heavy 18O labeling
could resolve the identification of some ambiguous peak
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assignments caused by the modest mass resolution of the 3D
ion trap in this study. Finally, the results indicate that UHPLC–
He–CTD–MS is a potential tool for the online characteriza-
tion of biologically important oligosaccharides with diverse
chemical properties. Expectations are that He–CTD will work
equally well for the complex mixtures of N- and O-linked
glycans.

Supplementary material

Supplementary material is available at Glycobiology Journal online.

Data Availability

Raw data available on demand from the corresponding author.
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