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A B S T R A C T

Fentanyl analogs (fentalogs) share many structural and mass spectral similarities that make them difficult to 
differentiate and accurately identify without chromatographic data. In such situations, the expert algorithm for 
substance identification (EASI) provides superior classification relative to conventional approaches. Using a 
database of >57,000 replicate electron-ionization mass spectra of 76 fentalogs from ten laboratories, three 
challenging sets of isomers were studied in detail. To maximize limits of detection, only the 20 most abundant 
ions were considered. In each case, 50 % of the data from one laboratory served as the training set. On average, 
the mean absolute residuals between measured and modeled abundances of known positives were five times 
smaller using EASI than the consensus approach, which used the means of training sets as the exemplar spectra to 
which all query spectra were compared. With a conservative threshold of zero false positives, EASI identified 
isovalerylfentanyl from its two closest isomers with an accuracy of 96.7 %, which was ~10 % better than the 
consensus approach. The associated positive likelihood ratios increased from 366 for the consensus approach to 
more than 4,200 for EASI. When discriminating isovalerylfentanyl spectra from the other 72 fentalogs, EASI 
provided errorless results with a positive likelihood ratio exceeding 50,000. For all 9 fentalogs, EASI out
performed the consensus approach and the use of Mahalanobis distance as a metric for identifying outliers. In the 
absence of retention time information, EASI improves confidence in drug identifications, enables inter-laboratory 
identifications, and reduces the need for acquiring concomitant spectra of standards.

1. Introduction

According to the 2021 National Forensic Laboratory Information 
System (NFLIS) drug report, fentanyl analogs (fentalogs) accounted for 
~75 % of reported overdose death cases in the U.S. despite the gov
ernment policies in place to regulate fentalogs as schedule I drugs [1,2]. 
Fentalogs can differ at several different substitution points on the core 
structure, which can lead to hundreds of analogs with unknown psy
choactive and physiological potencies. Despite the diversity in fentalog 
modifications, the core structure of fentanyl is usually conserved, which 
helps with identification strategies [3–5].

Gas chromatography/electron ionization-mass spectrometry (GC/EI- 
MS, or GC/MS) is the most widely used analytical technique for iden
tifying seized drugs [6,7]. GC/MS instruments are typically equipped 
with mass spectral library searching programs, such as the Hertz simi
larity index, probability-based matching (PBM), Euclidean distance, or 
cosine similarity for compound identification [8–15]. The simple 

similarity search (SSS), a NIST algorithm, is one of the most common 
algorithms on most modern-day GC/MS systems [13,16,17]. Although 
the SSS has been in use for decades, it has two main limitations: (i) the 
absence of reference spectra for rapidly emerging synthetic drugs, and 
(ii) match factors obtained using the SSS often do not adequately 
distinguish between drug isomers like amphetamines, synthetic cath
inones, or fentanyl analogs [17–23]. These limitations are evident in 
recent applications to isomeric fentalogs [24,25].

A variety of techniques are being developed to combat these limi
tations. For example, Moorthy et al. recently improved the SSS by 
introducing a new term, DeltaMass (Δm), to account for neutral losses in 
mass spectral data [17]. The improved SSS, or Hybrid Similarity Search 
(HSS), matches query and library peaks by direct m/z match and by a 
shifted library peak and, remarkably, HSS does not require the spectrum 
of the query compound to be in the library for it to propose a high 
probability for the correct molecular identity. Moorthy et al. acknowl
edge that the principal drawback of their method is the requirement of 
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the molecular mass of both the library and query compound to compute 
the DeltaMass successfully. However, they provide a way for estimating 
the nominal mass of query compounds in which the mass of the mo
lecular ion is unknown.

Additional algorithms to identify compounds from mass spectra 
include using Fourier- and wavelet transforms, using partial and semi- 
partial correlations after removing common features (ions) shared 
among spectra to amplify unique features, and determining optimal 
weight factors for the modified cosine similarity score (i.e. the NIST 
matching score) proposed by Stein and Scott [26–28].

Of course, classification and identification of fentalogs can also be 
accomplished with alternative approaches to GC/MS, including Raman 
spectroscopy [29], spectro-electrochemistry [30], GC-infrared spec
troscopy (GC/IR) [31,32], portable NMR [33], GC-vacuum ultraviolet 
spectroscopy (GC/VUV) [22,34], direct analysis in real time-mass 
spectrometry (DART-MS) [35,36], and liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) [25]. Although alternative equipment 
can assist with compound or isomer identification, such alternatives are 
typically only available to research institutions or well-funded crime 
laboratories. Therefore, a robust mass spectral algorithm for EI spectra 
could provide a low-cost practical benefit for current seized drug 
analysts.

Multivariate statistical approaches, such as PCA, PCA-LDA, machine 
learning, random forests, and artificial intelligence—like neural net
works—have also been used to identify or classify drugs from their mass 
spectra [18,20,24,37]. For example, Bonetti used PCA followed by LDA 
analyses to resolve the mass spectra of fluromethcathinone isomers and 
fluorofentanyl isomers. Bonetti also included leave-one-sample-out 
cross-validation and a blind study, which resulted in zero mis
classifications for both sets of isomers when using at least 131 variables 
(m/z abundances) [24]. In contrast, the same spectra subjected to PBM 
resulted in a 41 % error rate for the fluromethcathinone isomers and 
30.5 % for the fluorofentanyl isomers.

Moorthy et al. also introduced the NIST fentanyl classifier (NFC), a 
mass spectral similarity mapping program applied specifically to fen
tanyl analogs [19]. The NFC successfully classified Type I fentanyl 
analogs—analogs with one modification site—from Type II analogs, 
which have two modification sites. Some individual modification sites 
on Type I analogs were misclassified because of the mass spectral sim
ilarity of the analogs. In another study from Moorthy and Sisco, a min- 
max index was developed to aid in negative confirmation, i.e., 
excluding or differentiating one compound from another [38]. The 
index was achieved by comparing the lowest intra-sample spectral 
similarity to the largest inter-sample spectral similarity from several 
replicate measurements.

As described above, no current mass spectral algorithm thoroughly 
addresses the variance found within replicate mass spectra from various 
instruments and how this variance influences mass spectral identifica
tions. Also, most algorithms employ unabbreviated mass spectra with 
hundreds of variables. This fact, alone, implies that the performance of 
most algorithms will deteriorate when samples are more dilute, and the 
signal-to-noise ratios and the number of variables decreases. Many al
gorithms available use a consensus-based approach, which assumes that 
in a database with replicate spectra for each compound, there exists an 
ideal spectrum for each compound that could serve as the exemplar or 
reference spectrum for the basis for measurement uncertainty [39,40]. A 
study regarding the variation in mass spectra across different GC/MS 
instruments showed that even the base peak, the most abundant ion in a 
spectrum, could shift between different m/z values [41]. This shift can 
cause a domino effect on the other relative abundances in the affected 
spectra. These changes can affect and mislead how a drug analyst in
terprets a spectrum to determine a drug’s identity. If replicate spectra 
are not collected under identical conditions, the probability increases 
that there will be measurable differences in relative ion abundances and 
measured masses that could lead to false negative identifications [40].

A basic tenet of all classification algorithms is that if the training set 

does not include the expected variance of the external validators or the 
intended application, the algorithm will not perform as well on the 
external data as it does on the training set [42]. Our proposed algo
rithm–the expert algorithm for substance identification (EASI)—sug
gests a mechanism to overcome these limitations by modeling the 
correlated behavior within replicates on one instrument (for example) 
and extrapolating the trend through general linear modeling to predict 
ion abundances collected under different conditions or on another in
strument [43–45].

The abundances or branching ratios of fragments for a compound 
measured in one instance are likely to differ from those of the same 
compound collected at a different time or on a different instrument 
because of differences in: (i) the internal energy distributions of ions, (ii) 
the collisional environment of the ions, (iii) the timeframes available for 
fragmentation, (iv) mass-bias effects, such as those caused by differences 
in tuning, and (v) instrument geometries [46]. However, the kinetics 
that describe the branching ratios of molecules, and the dependence of 
kinetics on different factors like internal energy, has been rigorously 
demonstrated to follow reliable statistical models such as quasi- 
equilibrium theory (QET) or Rice-Ramsperger-Kassel-Marcus (RRKM) 
theory of unimolecular fragmentation [47,48]. Although QET/RRKM 
theories can, in theory, predict the branching ratios and mass spectra of 
relatively small molecules from first principles [49], EASI modeling does 
not require such a sophisticated level of theory or calculation [44,45]. 
This current work uses an empirical approach to modeling branching 
ratios in accordance with the expectations of QET/RRKM behavior 
[44,45].

As described elsewhere [44,45], EASI is based on the covariance that 
exists among the branching ratios of a substance when measured under 
slightly different, but uncontrolled, experimental conditions, as pre
dicted by QET/RRKM theory. In short, EASI sequentially treats the 
relative abundance of each ion in a spectrum as a dependent variable 
and the abundance of the remaining ions as independent variables. For 
computational simplicity, our work typically only considers the 20 most 
abundant ions in a training set of replicate spectra, so we typically 
generate 20 general linear models (GLMs) for each substance. The 
models normally explain more than 95 % of the variance that exists in 
the abundances of the replicate spectra, so whereas the same m/z peak in 
two replicate spectra may differ in abundance by 30 % or more on the 
absolute scale (relative to the base peak), the same abundances may be 
predicted with an accuracy better than 3 % on the same scale using EASI.

The goals of this project are inspired by several of the National 
Institute of Justice’s Forensic Science Research and Development 
Technology Working Group (TWG) Operational Requirements for seized 
drugs, which include: (1) “solutions to challenges identifying NPS, 
including…opioids”, (2) “…the study for error rate on qualitative 
analysis”, and (3) “the ability to identify NPS by comparison to spectra 
from a different instrument rather than the reference standard.” Here, 
we focus on distinguishing constitutional and positional isomers of 
fentanyl analogs in the absence of chromatographic information to 
maximize the discriminating power of the mass spectrometric dimen
sion. The comparisons here typically include several thousand replicate 
spectra of three sets of three spectrally similar fentalog isomers from at 
least two different laboratories.

2. Materials and methods

2.1. Chemicals and reagents

The reference fentalogs used in this study were the hydrochloride 
salts provided by Cayman Chemical (Ann Harbor, MI) under a contract 
from the Center for Disease Control (CDC). The fentalogs arrived in a 
Fentanyl Analog Screening (FAS) Kit containing analytical reference 
materials for 150 fentalogs of various substitutions. The names and 
molecular structures of the nine fentalogs used to develop models from 
the FAS kit are provided in Fig. 1. These fentalogs were selected because 
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they cover a reasonably wide range of structural modifications and 
represent different structural and spectral similarity problems. Stan
dards for Lab 1 were reconstituted in methanol per the FAS kit in
structions by adding 500 μL of HPLC grade methanol (Fisher Chemical, 
Hampton, NH) to each vial, which provided ~400 μg/mL of the analyte. 
The final concentration for analyzed standards were between 130 and 
200 ppm. Standards for Lab 2 were also purchased from Cayman 
Chemical and diluted to 1 mg/mL in methanol.

The nine fentalogs were designated to three spectrally challenging 
isomeric classes: class 1 (row 1 in Fig. 1) contains valerylfentanyl, iso
valerylfentanyl, and cis-3-methylbutyrylfentanyl, which all have the 
same monoisotopic mass of 364.25 Da; class 2 (row 2 in Fig. 1) contains 
o-, m-, and p-methylmethoxyacetylfentanyl, which all have mono
isotopic masses of 366.23 Da; and class 3 (row 3 in Fig. 1) contains o-, m- 
, and p-methylfuranylfentanyl, which all have monoisotopic masses of 
388.22 Da. Lab 1 provided spectra for all nine fentalogs and Lab 2 
provided spectra for three of the nine fentalogs (i.e., class 1).

2.2. Instruments and settings

Replicate GC/MS spectra were collected for the available fentalogs 
from two separate laboratories. Lab 1 ran most of the isomers in the 
study, Lab 2 ran a large subset of the fentalogs, and other labs contrib
uted varying numbers of replicates from their available fentalogs. To 
provide a more challenging inter-laboratory comparison of spectra, no 
attempt was made to align the conditions between the two instruments. 
Lab 1 ran all the reference standards on an Agilent Technologies (Santa 
Clara, CA) 7890B GC equipped with an Agilent HP-5 column (30 m ×
0.25 mm × 0.25 μm film thickness) and an Agilent 5977 A mass spec
trometer. The GC/MS parameters were as follows: injection volume was 
1 μL; inlet temperature was set to 250 ◦C; split ratio was 10:1; split flow 

was 15 mL/min. The initial oven temperature was 50 ◦C, then ramped to 
280 ◦C at 150C/min and held for 7.7 min. The carrier gas (helium) flow 
rate was set to 1.5 mL/min. The mass spectrometer scanned from m/z 
35–450 after a solvent delay of 2 min. The MS quad and source tem
peratures were 200 ◦C and 250 ◦C, respectively. All spectra from Lab 1 
were collected over a 3-month period during which the GC/MS instru
ment was autotuned before each sequence. Tuning ensured that the air/ 
water levels were below specifications and that the peak ratios for the 
calibration compound were within the acceptable ranges of the manu
facturer’s manual.

Lab 2 ran fewer reference standards on an Agilent Technologies 
(Santa Clara, CA) 6890 GC with an Agilent DB-1 column (30 m × 0.25 
mm × 0.25 μm film thickness) and an Agilent 5973 N mass spectrom
eter. The GC parameters were as follows: injection volume was 1 μL; 
inlet temperature was 280 ◦C; split ratio was 50:1; split flow was 134.1 
mL/min. The initial oven temperature was 80 ◦C, then ramped to 300 ◦C 
at 300C/min and held for 9 min. The carrier gas (helium) flow rate was 
set to 1.3 mL/min. The mass spectrometer scanned from m/z 40–500 
after a solvent delay of 2 min. The MS quad and source temperatures 
were 150 ◦C and 230 ◦C, respectively. All data was collected in two 
separate 2-month periods over 2 years. The instrument also passed daily 
autotunes before each set of analyses.

As mentioned earlier, we made no attempt to align any of the 
instrumental conditions across the labs including the tuning types in 
efforts to include much variance in the acquired spectra. Typically, 
varying tuning conditions can have deleterious effects on ranking library 
matches with current algorithms [7,14], but with the inclusion of 
replicate spectra to our regression modeling, we have overcome these 
effects [44].

In both labs, a methanol blank was analyzed at the beginning of each 
sequence and between every sample to prevent carryover or 

Fig. 1. The nine fentalog standards used in this study present three classes (one per row) of spectrally similar isomers.

A.I. Adeoye and G.P. Jackson                                                                                                                                                                                                               Forensic Chemistry 44 (2025) 100660 

3 



contamination between samples. In addition to the nine fentalogs 
modeled and studied in detail, we acquired more than 35,000 replicate 
EI-mass spectra of dozens of other fentalogs from several other labs to 
serve as known negatives (KNs). The spectral contributions are shown in 
Table 1. The instruments were all manufactured by Agilent, but the 
experimental details are not known to us. These data files were extracted 
in the same manner to provide known negative spectra of other fentanyl 
standards covering a wide range of absolute abundances and potential 
spectral skewing. This work focuses on the demonstration of EASI to 
three particularly challenging applications where ground truth is known 
for every sample. In this work, we do not address the possibility of 
coelution or background contamination. However, the abundance and 
quality of the mass spectra were selected in a manner that encouraged 
greater variance than is typical for the assessment of spectral identifi
cation algorithms.

2.3. Data extraction and selection

The original data files in Agilent’s proprietary “.D” format were 
viewed and extracted in MSD ChemStation version F.01. After back
ground subtraction (as needed), the ion abundances from m/z 40–500 at 
every scan across the eluting GC peak were exported as “.csv” files. Each 
injection therefore provided about 15–20 mass spectra of varying ab
solute abundance and with the possibility of spectral skewing/tilting 
caused by changes in the concentration of the eluting substance during 
each mass scan [50]. The *.csv files were then imported to a master 
Excel spreadsheet that contained all the samples and their spectral in
formation, such as the compound name, scan number, instrument series, 
date, and time. For valerylfentanyl, more than 2400 spectra of varying 
quality were generated from Lab 1, and approximately 1200 of those 
were considered high quality, as defined by all 20 most abundant ions 
exceeding 2000 counts. Of the 131 valerylfentanyl spectra from Lab 2, 
approximately 16 were considered high quality according to the defi
nitions below. A summary of the contributing spectra is provided in 
Table 1.

A separate Excel database containing all the nine fentalogs with their 
extracted spectral information was compiled; this resulted in almost 
20,000 spectra. An additional Excel sheet was compiled with extra 
known negatives of fentalog spectra from other collaborating labs. The 

entire database consisted of more than 57,000 spectra of 76 fentalogs. 
Most of these analogs are relatively easy to distinguish from one another, 
so they are not often discussed in the metrics that challenged the false 
positive prediction rate or overall error rate.

For a spectrum to be included as a known positive in the training set 
on which general linear modeling was performed, the following criteria 
were used to define spectra of high quality: 1) the base peak was 
required to be between 8000 and 8 million counts; 2) no ion abundance 
among the top 20 most abundant peaks could be less than 2000 counts; 
and 3) there could be no electronic defects or artifacts in the spectrum (i. 
e., no constant signal, noise spikes or replicate identical measurements). 
All spectra that fit the above criteria were considered high quality 
spectra. Note that our definition of ‘high quality’ is not as conservative 
as one might expect. Most of the low-quality spectra were from the 
extreme ends of the chromatographic peaks. Here, the spectra often 
contained fewer than 20 fragment ions that exceeded 2000 counts. By 
omitting these very low-quality data, we ensure the spectral ‘ground 
truth’ for the known positives, i.e. that ion abundances are present 
above 2000 counts for at least 20 ions.

In developing 20 GLMs for each of the nine known positives in Fig. 1, 
the 20 most abundant ions were selected for several reasons: 1) almost 
all organic molecules will provide more than 20 fragment ions, so the 
approach does not need to be tailored for a given substance; 2) using the 
most abundant ions provides the best limits of detection because the 
abundant ions have the greatest signal-to-noise ratio; and 3) in the PBM 
approach to mass spectral comparisons, McLafferty et al. showed that 
using the 15 most abundant ions in a spectrum was almost as effective as 
using all the ions in a spectrum to rank the most likely identity in the 
number one position [51]. Because we intend the algorithm to apply to 
retroactive spectra and existing databases, all spectra were normalized 
to their respective base peaks at 100 %, as is customary. Normalization 
to a base peak has the undesirable effect of making the most abundant 
peak invariant or, in cases when the base peak vacillates between two 
different m/z values, truncates the distributions of each ion that serves 
as the base peak. In both cases, normalization prevents the base peak(s) 
from adopting truly random, symmetrical variance, and some deviations 
from statistical ideality are expected as a result.

Table 1 
Summary table showing total number of spectra in the EI-MS database.

Drug no. Compound No. of spectra No. of contributing labs Total available spectra High quality spectra

1 Valerylfentanyl 2537 2 Lab 1–2400 
Lab 2–131

Lab 1–1224 
Lab 2–16

2 Isovalerylfentanyl 1824 2
Lab 1–1750 
Lab 2–74

Lab 1–922 
Lab 2–17

3 Cis-3-methylbutyrylfentanyl 1729 2
Lab 1–1700 
Lab 2–29

Lab 1–919 
Lab 2–9

4 o-methylmethoxyacetylfentanyl 2400 1 Lab 1–2400 Lab 1–978
5 m-methylmethoxyacetylfentanyl 2300 1 Lab 1–2300 Lab 1–1025
6 p-methylmethoxyacetylfentanyl 2300 1 Lab 1–2300 Lab 1–1106
7 o-methylfuranylfentanyl 3050 1 Lab 1–3050 Lab 1–1245
8 m-methylfuranylfentanyl 2950 1 Lab 1–2950 Lab 1–1093
9 p-methylfuranylfentanyl 2744 1 Lab 1–2744 Lab 1–1184

10–76 Various fentanyl analogs 35,437 10

Lab 1–37,584 
Lab 2–1087 
Lab 3–5847 
Lab 4–1331 
Lab 5–180 
Lab 6–55 
Lab 7–62 
Lab 8–66 
Lab 9–5 
Lab 10–3

Not assessed

A.I. Adeoye and G.P. Jackson                                                                                                                                                                                                               Forensic Chemistry 44 (2025) 100660 

4 



2.4. Model building

To build 20 GLMs for the 20 most abundant ions for each of the nine 
fentalogs, we randomly selected ~50 % of the known positive spectra 
from one instrument (Lab 1) to serve as a calibration or training set for 
the known positive substance. The remaining ~50 % of the known 
positive spectra from that instrument served as the internal validation or 
test set. When applicable (e.g., isomer class 1), the known positive 
spectra from Lab 2 served as the external validation set. The models 
were tested with known negatives that were both spectrally similar and 
spectrally distinct. We had no less than 400 replicate spectra in both the 
training and test sets. Fig. 2 shows the hierarchical organization of the 
model building.

Twenty GLMs were built for each training set using the commercially 
available statistical package, IBM SPSS. Each of the 20 most abundant 
ions in a training set was sequentially used as the dependent variable, 
while the remaining 19 ions were used as independent variables or 
covariates. Since there are multiple covariates, this form of GLM is 
multiple linear regression, wherein more than one variable (plus a 
constant) can explain the variance found in the predictor. For each of the 
20 most abundant ions, a GLM is written with the following expression: 

ŷ = β0 + x1β1 + x2β2…+ xnβn (1) 

where ŷ is the predicted ion abundance for the dependent peak, β0 is the 
y intercept, βn is the coefficient for each variable, and xn is the nth co
variate ion abundance. Variables were added and removed using SPSS’s 
stepwise addition method to ensure that each model included only the 
minimum number of variables required to explain the maximum 
possible variance. In general, 4–8 variables were typically sufficient to 
explain >95 % of the variance in each dependent fragment. During the 
automated model development in SPSS, the relative importance of each 
covariate at each step is assessed using the significance of the F-statistic 
or the partial eta-squared function. Sometimes, during model develop
ment, a covariate will have a β-value with an uncertainty that includes β 
= 0; these covariates have small partial eta squared values (e.g., <0.05) 
and are insignificant in the model; they are therefore not included. As 
the variables are entered into the model in a stepwise fashion, the model 
includes only covariates (m/z abundances) if the addition of the variable 
contributes significantly (p < 0.05) to the explained variance in the 
model relative to the model with one less variable. Variables are 
removed if their addition does not significantly reduce the explained 
variance in the model (p > 0.1). On average, between 4 and 8 variables 
contributed significantly to each predictive m/z model. The models were 
built with an intercept to show the variability of correlations (both 

positive and negative) between m/z abundances.
In each GLM, SPSS was programmed to predict the abundance of the 

dependent variable for every spectrum in the database. SPSS also 
calculated the unstandardized and standardized residuals for all the 
spectra in the training set, test set, and external validation set. In every 
model, the residuals between predicted and measured abundances of the 
training set were plotted and evaluated to check for any deviations from 
expected behavior, such as nonsymmetrical, truncated, or bimodal dis
tributions. The residuals were also used to create normal probability 
plots to test for normality.

The consensus or exemplar spectrum for each modeled isomer was 
simply the average spectrum of the 20 most abundant ion abundances of 
all the training set spectra for each compound in the database.

2.5. Evaluation metrics

The predicted abundances and the residuals from the GLMs were 
assessed in various ways to function as binary classifiers for the known 
positives (KPs) and known negatives (KNs), as described before [44,45]. 
The residuals from the GLMs were used to determine how closely the 
EASI-model predictions fit the measured spectra. Since the residuals can 
be positive or negative, we calculated the mean absolute residual (MAR) 
of 20 residuals for each substance to provide a single value per spectrum. 
The Euclidean distance, or the square root of the sum of squares of 
differences, a well-known metric used to assess the fitness of multivar
iate predictions, was also calculated using the unstandardized residuals 
from the EASI-fitted models.

Because EASI’s approach to mass spectral differentiation is reliant on 
the correlations and anticorrelations between ion abundances, we also 
calculated the Mahalanobis distance for every spectrum in our database 
relative to the training set of each known positive. The Mahalanobis 
distance is a metric that uses the covariance in data to calculate how 
many standard deviations away a point is from the mean of a dataset in 
multidimensional space [44,45]. The Mahalanobis distance is often used 
to identify outliers in multivariate data. Here, we assume that Mahala
nobis distances are smaller for isomers with the same identity and 
greater for isomers with different identities, and we optimized the 
Mahalanobis distance threshold for discrimination between known 
positives and known negatives for each fentalog.

The 20 measured abundances were also compared to the 20 EASI- 
predicted abundances using the dot-product as a similarity measure. 
We adapted the Stein and Scott’s dot-product formula [13]. This dot 
product scale ranges from 0 to 1, where scores between 0.8 and 1 
typically indicate a strong similarity between the compared spectra. We 
also calculated weighted dot-products using the NIST algorithm to 

Fig. 2. The hierarchical organization of selecting the training and validation sets. *Lab 2 spectra were only available for isomer class 1.
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provide meaningful comparisons to the consensus approach [44,45]. 
First, the spectra from the consensus and EASI models were transformed 
into a weighted variable, w, using Stein’s weighting factors of x = 0.6 
and y = 3, as follows [13]. 

w = (peak intensity)0.6
• (mass(m/z) )3 (2) 

The weighted variables from the consensus spectrum or EASI models 
were then compared to each respective measured spectrum using the 
standard dot-product before scaling by a factor of 999 to provide the 
standard NIST Match Factors for each spectrum.

The evaluation metrics were plotted on receiver operating charac
teristic (ROC) curves, which are graphical visualizations of the true 
positive rate (TPR), or sensitivity, versus the false positive rate (FPR). 
ROC curves allow users to determine the relative tradeoffs between the 
benefits (TPR) and costs (FPR) of a classification system across a single 
threshold or multiple thresholds [52]. We used the similarity and 
dissimilarity measures as continuous variables to build a confusion 
matrix of true positives (TPs), true negatives (TNs), false positives (FPs), 
and false negatives (FNs) over a wide range of threshold values. The ROC 
curves were generated in SPSS using the ROC Analysis function. For the 
similarity values, dot product and NIST Match factors, the test direction 
was “larger test result indicates more positive test” since a larger score 
value for these specific metrics indicates a higher degree of similarity for 
the compared spectra. We reversed the test direction for the dissimilarity 
metrics, mean absolute residual (MAR) and Euclidean distance, to 
“smaller test result indicates more positive test” since the smaller the 
MAR or Euclidean distance the closer the compared spectra are to each 
and hence more likely to share the same identity. After plotting the ROC 
curves, we calculated the area under the ROC curve (AUC) for each 
curve. The AUC is a measure of a test/classifier’s performance [53]. An 
AUC of 1.0, the maximum value, indicates a perfect test with errorless 
identification. An AUC of 0.5 indicates a 50 % chance of correct iden
tification, or a random classifier with no discriminatory value. An AUC 
score can be considered as the probability that the classifier will rank the 
correct identification higher than an incorrect identification, i.e., the 
higher the AUC, the more confidence we have in that classifier’s per
formance [52]. The ROC curves presented in this work were developed 
using each of the evaluation metrics described above. The ROC curves 
and subsequent AUCs can help analysts decide which threshold to select 
to maximize the true positive and true negative rates while minimizing 
the false negative and false positive rates. Finally, we also calculated the 
positive likelihood ratio (LR+) [54] for each evaluation metric. Likeli
hood ratios are becoming a popular way to help communicate proba
bilities, or the importance or the weight of evidence, in courts of law. 
Likelihood ratios are employed through Bayesian statistics to help 
inform the value that a test can add to the prior knowledge. LR+ as 
generally defined by Choi as the probability of a positive test among 
diseased persons divided by the probability of a positive test among non- 
diseased persons [54]. Practically, we can calculate the LR+ from the 
ROC curve by calculating the slope of the curve from the origin to a fixed 
point or threshold, which is equivalent to calculating the TPR divided by 
the FPR at a given threshold (Eq. (3)). 

LR+ =
specificity

1 − sensitivity
=

TPR
FPR

(3) 

Choi mentions two other ways to calculate the slope of a ROC curve 
and how to calculate the likelihood based on those specific slope cal
culations [54]. We chose this method as it is the most intuitive and 
easiest to communicate with a broader audience.

3. Results and discussion

3.1. Regression results

Relative abundances within replicate mass spectra always exhibit 

natural variation. As demonstrated in Fig. 3A, the relative abundance of 
m/z 57 of valerylfentanyl (VF) on one instrument over several months 
ranges from ~13 % to ~58 % relative to the base peak. Typically, this 
variance is considered to be randomly variable, but our previous work 
has shown that abundances at each m/z value typically strongly corre
late or anticorrelate with other m/z values [43,44].

The consensus-based approach assumes that the “ideal” relative 
abundance of m/z 57 should be 23.6 % since that is the mean of the 
training set. Readers should immediately note that many of the 
measured abundances of the training set fall outside the typical uncer
tainty criterion of ±20 % on the absolute scale (i.e., 3.6 %–43.5 %) 
[55–57]. This dataset collected over several months therefore contains 
more variance and more outliers than one would typically expect over 
within-day or within-week variance [55–57]. However, Pearson corre
lation analysis using the 20 most abundant ions for VF demonstrates that 
significant correlations and anticorrelations exist between ion abun
dances at different m/z values (Table 2), which justifies the fundamental 
basis for multivariate general linear regression modeling. Pearson cor
relations of the 20 most abundant ions within each training set of the 
other eight fentalogs are provided in supplemental Tables S2–S9.

Instead of relying on the exemplar abundance of 23.6 %, relative to 
the base peak, to ‘predict’ the abundance of m/z 57 in a random repli
cate, we could instead use a variable that correlates more strongly with 
m/z 57, such as m/z 41 (r = 0.977), m/z 70 (r = 0.961), or m/z 105 (r =
0.929). In a bivariate plot of m/z 105 versus m/z 57, a univariate linear 
model explains ~87 % of the original variance, as shown in Fig. 3B.

As suggested earlier, not all the 20 most abundant peaks correlate 
positively and strongly with one another. In general, high mass ions tend 
to correlate positively with one another, low mass ions tend to correlate 
with one another, and anticorrelations tend to occur between ions that 
are disparate in m/z value (see gold cells in

Table 2). Similar trends were observed previously for cocaine [44], 
and the behavior is expected for factors that directly or indirectly impact 
mass bias, like changes to tune settings and internal energy deposition 
during ionization.

In the case of m/z 57, when we allowed the remaining 19 m/z 
abundances to be considered as covariates in multiple linear regression, 
the final model included 12 of the 19 covariates to explain 98 % of the 
variance in the abundance at m/z 57. According to Table 3, the final 
model is shown in Eq. (4). 

Â57 = 2.858+0.532A41 +0.209A42 − 0.051A44… (4) 

Beta coefficients for the other eight fentalogs modeled in this study 
are provided in supplemental Tables S10–S17. Fig. 3C shows the results 
of the predictions for m/z 57 plotted against the measured values for the 
training set (n = 608, in blue circles), the internal validation set (n =
616, also in blue circles), and the external validation set (n = 16, in 
orange circles). Although the external validation data in orange often 
have measured relative abundances for m/z 57 that fall below the lower 
limit of ~13 % of the training set, the data fall very close to the y = x line 
in Fig. 3C, which indicates the fitness of the model for extrapolating 
beyond the measured variance in the training set.

Fig. 4 shows a histogram and a normal probability plot of the stan
dardized residuals for the GLM for m/z 274 to check the assumption that 
the errors (residuals) from the training set are normally distributed. The 
residuals from m/z 274 conform closely to the expected ideal behavior 
for a Gaussian curve (black line in Fig. 4A). The results indicate that 
other statistical inferences made from this data are reasonably valid. The 
residuals from the training sets for the other 19 models also passed 
similar checks for normality.

One central point of interest was determining if substances collected 
from different instruments could be compared for identification pur
poses. We tested that by comparing replicate data for VF from two 
different labs (Fig. 5).

In Fig. 5A and Fig. 5B, the external validation data from Lab 2 (in 
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dark blue) follows the same regression line as the data from Lab 1 (in 
lighter blues), even though the relative abundances for Lab 2 fall outside 
the range of Lab 1. The known negative isomers in this set, IVF and C-3- 
MBF have large residual errors for this model, so the orange points fall 
far from the y = x line for errorless predictions. This trend is similar to 
the trend observed for m/z 57 in Fig. 3C. In Fig. 5C and Fig. 5D, the 
measured and predicted values for the 54,604 spectra of the remaining 
73 fentalogs are shown for comparison. Whereas a few random spectra 
fall close to the line, almost all provide large residual errors for this 
model, of 20 models, for VF.

The capability to extrapolate a model beyond the variance of a 
training set is a major paradigm shift in spectral comparisons. Regres
sion to the mean, or spectral similarity, is no longer a prerequisite for 
spectral identification; the ability to extrapolate from the trend observed 
in Lab 1 to Lab 2 makes it possible to conduct reliable inter-instrument 
and inter-laboratory comparisons without requiring spectral similarity.

3.2. Distinguishing isomers

Each of the nine selected fentalogs were compared with two nearest 
spectral neighbors and all the other fentalogs in our database. The initial 
mass spectral comparisons for isomer class 1 using the NIST MS Search 
2.3 software showed that cis-3-methylbutyrylfentanyl (C-3-MBF) has a 
significantly different distribution of ion abundances compared to VF 
and isovalerylfentanyl (IsoVF). The resulting NIST Match Factor be
tween C-3-MBF and VF is 656, which shows that these two constitutional 
isomers can be easily distinguished by the typical exemplar approach. 
However, the head-to-tail plot of VF and IsoVF (Fig. 6) shows the 
remarkable degree of spectral similarity between VF and IsoVF. The 
difficulty in distinguishing between VF and IsoVF is reflected in the 
match factor score of 885 between two randomly selected spectra, which 
is typically considered a reasonable match or the same identity.

With EASI analyses, C-3-MBF was also easily distinguished from VF 

Fig. 3. Scatter plots showing (A) the relative abundances of m/z 57 of high quality valerylfentanyl data from Lab 1 and 2, (B) the relative abundances of m/z 57 as a 
function of m/z 105 of the same data, and (C) the relative abundances of m/z 57 as predicted by a GLM containing 12 variables (ion abundances) of the same data. 
The diagonal line shows y = x for errorless identifications.

Table 2 
Table of Pearson correlations between the relative abundances of the 20 most abundant ions of valerylfentanyl in the training set of 608 high quality 
spectra from one laboratory. Gold cells indicate the two most highly correlated/anticorrelated abundances in each row.
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and IsoVF. In isomer class 1, although all three fentalogs are constitu
tional isomers, VF and IsoVF are only modified in the R2 region (amide 
group), whereas C-3-MBF is modified in the R3 and R2 regions. For VF 
and IsoVF, the four acyl carbon atoms are all in the amide group, so they 
are structurally very similar. For C-3-MBF, the four acyl carbon atoms 
are split between three on the amide (butyryl) group and one on the 
piperidine ring. The difference in constitutional arrangement causes a 
significant difference in the fragment ions produced in the mass spectra 
of C-3-MBF compared to VF and IsoVF. Hence, despite being a 

constitutional isomer, the spectra of C-3-MBF are quite easy to resolve 
from those of VF and IsoVF using either algorithm.

The spectral similarity of VF and IsoVF is reflected in the observation 
that they share 17 of the 20 variables (most abundant ions) used to build 
the models. In contrast, C-3-MBF included seven unique ions (m/z 71, 
79, 110, 160, 161, 203, and 230) not used in the VF and IsoVF models. 
The three ions not shared between the VF and IsoVF models could be 
used to discriminate between the isomers. In fact, Sacha et al. compared 
VF and IsoVF with a different constitutional isomer, pivaloyl fentanyl 

Table 3 
Table of beta coefficients for 20 multivariate linear models of valerylfentanyl with the dependent variables in the first column and the coefficients for any 
included independent variables in the same row.

Fig. 4. (A) Histogram showing the standardized residuals of the training set compared to a normal distribution curve from the valerylfentanyl training model for m/z 
274 (n = 608). (B) Probability plot to show the expected versus observed cumulative distribution (CDF) relative to a normal distribution.
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using the unequal variance t-test, which is a direct method for m/z 
pairwise comparisons between two spectra to determine statistical 
equivalence [58]. This method has been previously used to discriminate 
between spectrally similar amphetamines and cathinones [59,60]. In 

this pairwise method, if any of the m/z pairwise comparisons resulted in 
a statistical difference, then it was concluded that the two spectra 
compared were statistically distinct and were not the same identity. 
Their results found 4–6 ions of relatively low abundance that were 

Fig. 5. Scatter plots showing the measured abundance of m/z 105 (relative to the base peak) and the predicted abundance of m/z 105 for the valerylfentanyl model. 
A) shows the three isomers in set 1, B) shows a zoomed-in region to highlight the accuracy of predictions for known positives of VF from the different sources, C) 
shows all known negatives from all labs, D) shows a zoomed-in region to highlight the general inaccuracy of predictions for known negatives. (nKPs = 1,243, nKNs 
= 54,604).

Fig. 6. Head-to-tail mass spectra plot of VF (red) and IsoVF (blue) showing a match factor (MF) of 885 and a reverse match factor of 885. Generated in NIST MS 
Search 2.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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statistically distinct between VF and IsoVF and several more that 
distinguished pivaloylfentanyl from VF and IsoVF. In the interest of 
maximizing the limits of detection, the present work did not consider 
these relatively low-abundance ions at all. In the present work, VF was 
not perfectly discriminated from IsoVF by any of the evaluation metrics 
using either the consensus approach or EASI. However, as detailed 
below, EASI outperformed the consensus approach for every considered 
metric.

3.2.1. Mean absolute residual (MAR)
Table 4 summarizes the mean absolute residuals (MARs) for IsoVF 

and C-3-MBF relative to the VF models using the consensus approach 
and EASI. The average MAR using EASI is almost six times smaller than 
the average MAR from the consensus approach, and the range of values 
is also more precise for EASI. Unintentionally EASI also makes better 
predictions for the known negatives, but the reduction in MARs is more 
significant for the known positives than the known negatives, so the 
distributions of known positives and known negatives are better sepa
rated using EASI. Supplemental Tables S18–19 provide similar summary 
statistics for Euclidean distances and the simple dot product as spectral 
comparison metrics.

The population plots in Fig. 7 help visualize the overlap in the dis
tributions of MARs of the different sets of known positives for EASI. 
Fig. 7A shows the distributions of MARs of the 1242 known positive VF 
spectra relative to the VF model and Fig. 7B shows the distributions of 
MARs for 1820 IsoVF spectra relative to the IsoVF model. Whereas 
Fig. 3C and Fig. 5 showed that Lab 2’s data for VF contained abundances 
that differed significantly from those of Lab 1, which were used for the 
training set, the GLMs nonetheless are able to extrapolate effectively and 
make predictions of Lab 2’s spectra and provide MARs that are within 
the upper limit observed for the training set of ~3 %. For IsoVF, several 
of the external validation spectra from Lab 2 fall slightly outside the 
upper limit of ~1.5 % for the training set. The data shows that EASI 
modeling provides better abundance predictions for interlaboratory 
comparisons than by using the consensus spectrum from Lab 1 as the 
exemplar for Lab 2 comparisons.

The MARs for all the known positives of VF in Fig. 7A were then 
pooled and plotted as a single population plot next to all the known 
negatives of IsoVF and C-3-MBF (Fig. 8). The overlap in the MARs of the 
two distributions shows that errorless identifications cannot be made 
between the known positive VF and the known negatives of IsoVF and C- 
3-MBF. In Fig. 8A, the distribution of the known negatives extends to 

MARs as small as 1.08 %, which is well within the range of known 
positives of VF. Such small MARs for known negatives prevent the 
possibility of errorless classification for the consensus approach. At a 
threshold of 1.07 % (gold line in Fig. 8A), binary classification would 
result in no false positives, but 1,196 false negatives (>96 % FN rate). In 
Fig. 8B, the known negative distribution also overlaps with the range of 
the known positives, but to a lesser extent. Using a similar threshold of 
MAR of ~1.03 % (gold line), provides no false positive identifications 
and 236 false negatives (19 % FN rate).

The table below (Table 5) is a summary of the binary classification 
figures of merit for the mean absolute residual (MAR) for the consensus/ 
exemplar approach (CNS) and EASI for the compounds in isomer class 1. 
In this table, we compare each compound to its two nearest neighbors 
(NN) and then to all other fentalogs (All) in our database. The spectra 
from the NN are not included in the calculations for all other fentalogs. 
The threshold is set to allow one false positive so that a minimum pos
itive likelihood ratio (LR+ =TPR/FPR) can be calculated. The results 
show the dramatic improvement in LR+ values for EASI relative to the 
consensus spectrum approach. For VF, the LR+ improves by a factor of 
~16, from 157 for the consensus approach to 2,529 for EASI. A similar 
magnitude of improvement is evident for IsoVF, which increased from a 
minimum LR+ of 366 for the CNS approach to 4,248 for EASI. For C-3- 
MBF, the consensus approach provided only 18 false negatives at a 
threshold of 9.12 % for the MAR, but no false negatives using a threshold 
of 4.71 % for EASI. For both the CNS and EASI approaches, the LR+
exceeded 4,200 for C-3-MBF, which again indicates its spectral differ
ences relative to VF and IsoVF.

The methylmethoxyacetylfentanyl (MMAF) and methylfur
anylfentanyl (MFF) fentalogs share a greater degree of spectral simi
larity between the three positional isomers of each compound and are 
therefore much harder to resolve. The ortho forms of both positional 
isomers have more distinct spectra than the meta and para forms, and the 
meta and para forms are the most difficult to distinguish from one 
another. Overall, the 20 most abundant ions in the EI-spectra of the three 
positional isomers within each drug class share significant overlap. The 
spectral similarity of ortho and meta-MMAF and meta and para-MMAF 
are shown in the head-to-tail plots in Fig. 9A and Fig. 9B, respectively. 
The head-to-tail plots for ortho and meta-MFF and meta and para-MFF are 
shown in Fig. 10. The difficulty in differentiating between each meta- 
para pair is reflected in the match factors between the two different 
isomers >900, which, in the absence of retention time data, could pre
vent an analyst from distinguishing them (Fig. 9B and Fig. 10B).

Table 6 provides summary MARs of the binary classification figures 
of merit for isomer class two. Similar to Table 5 above, each compound is 
compared to its two nearest neighbors (NN) and then to all other fen
talogs (All) in the database. For this class, the biggest improvements in 
LR+ are for the m-MMAF and p-MMAF isomers, where EASI improved 
the LR+ from 73 to 2,664 for m-MMAF and from 68 to 2,265 for p- 
MMAF. The best performance was for o-MMAF, where EASI provided a 
minimum LR+ of 4,600 with one false positive. In all cases, EASI pro
vided accuracies greater than 90 %, but the CNS approach had accu
racies of ~82 % for the para and meta isomers.

Isomer class 3 consists of fentalogs o-, m-, and p-MFF, which are 
modified in the R4 and R5 regions with a furanyl group and a methyl 
group, respectively. Table 7, below, provides a summary of the MARs for 
each isomer as the known positive with the known negative spectra for 
the nearest neighbors (NN) and the remaining spectra from the fentalog 
database (All). As with the MMAF isomers, the biggest improvements in 
LR+ are for the m-MMF and p-MMF isomers, where EASI improved the 
LR+ from 610 to 3,112 for m-MMF and from 76 to 3,963 for p-MMF. 
Again, the best performance was for the ortho isomer, where EASI pro
vided a minimum LR+ of 5,694, with one false positive and no false 
negatives. In all cases, EASI provided accuracies greater than 90 %, 
whereas the CNS approach provided accuracies of ~86 % and ~ 84 % 
for the meta and para isomers of MFF, respectively.

Table 4 
Summary of mean absolute residuals (MAR) of 20 ion abundance predictions 
within spectra of isomer class 1 using two different models: 1) the consensus 
approach, and 2) EASI. The consensus spectrum was the average of 608 known 
positive valerylfentanyl (VF) spectra in the training set.

Spectral set Mean absolute residuals (MARs)

Consensus model (CNS) EASI (general linear 
models)

Mean of 
set

Range of set Mean of 
set

Range of set

KPs

VFLab#1 

Training set (n =
608)

3.78 0.58–12.25 0.65 0.14–2.92

VFLab#1 

Test set (n = 618) 3.60 0.48–11.21 0.78 0.15–15.98

VFLab#2 

Validation set (n 
= 16)

6.47 2.31–10.77 1.29 0.47–2.64

KNs

IsoVF 
n = 1,820

7.69 1.08–28.76 4.01 1.04–29.74

C-3-MBF 
n = 1,729

13.47 8.56–27.61 11.34 6.25–26.39
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3.2.2. ROC curves
The area under the ROC curve (AUC) provides an aggregate measure 

of performance across all possible classification thresholds. One way of 

interpreting the AUC for MAR as the metric is as the probability that the 
model ranks a random positive example closer to zero than a random 
negative example. Fig. 11 shows two examples of ROC curves: one using 

Fig. 7. Frequency distribution plots showing the distribution of MARs for EASI of the training sets, test sets, and external validators for: (A) VF (nLab1 = 1226, nLab2 =

16) and (B) IsoVF (nLab1 = 1,226, nLab2 = 16).

Fig. 8. (A) Frequency plot of consensus MARs of the known positives (VF, n = 1242) and known negatives (IsoVF and C-3-MBF, n = 3553) using the consensus 
approach and (B) frequency plot of MARs of the known positives (VF, n = 1242) and known negatives (IsoVF and C-3-MBF, n = 3553) using EASI. The gold line 
indicates the threshold values for zero false positives. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Table 5 
Summary of binary classification figures of merit for the mean absolute residuals (MARs) for isomer class 1. NN = nearest neighbors from the same 
spectral set; All = entire database. Darker shading indicates greater than 90 % accuracy.
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MARs for the consensus and EASI models for VF, and the other using the 
dot product scores for the consensus and EASI models for IsoVF. For all 
the ROC curves, the known positives include all the known positive data 
from all the labs. The known negatives for the VF ROC curve only 
contain IsoVF spectra and the reverse is true for the IsoVF ROC curve. 
The AUCs for EASI metrics are 0.974 and 0.986, respectively, which 
indicate major separation of the metrics for these spectrally similar 
fentalogs. In contrast, the same training set of spectra provide AUCs of 
0.698 and 0.767 for the consensus approach because the spectral com
parison metrics overlap more. Although VF is not entirely distinguished 
from IsoVF, ROC curve analysis shows that EASI outperforms the 
consensus approach when comparing the area under the curve of both 
methods with two different evaluation metrics.

3.2.3. Euclidean distances
EASI can undoubtedly distinguish the ortho forms for isomer classes 2 

and 3 from their meta and para forms using Euclidean distances because 
there is no overlap in the distributions of Euclidean distances between 
the ortho isomer and the other isomers. Therefore, as shown by the gold 
areas in Fig. 12 any threshold between 10.09 % and 12.44 % would 
make errorless identifications between the ortho isomer and the meta 
and para isomers.

3.2.4. NIST scores
For all nine compounds, the NIST Match Factors between all known 

positives and their respective models resulted in scores greater than 900 
for both the consensus approach and EASI. However, the nearest 
neighbors also provided NIST scores exceeding 900 for most replicates, 
so there was overlap in the NIST score distributions of known positives 
and known negatives. Assuming a conservative limit of 1 false positive 
as the threshold for binary classification, the false negative rate could 
then be calculated for each substance. The threshold values and false 
positive rates for each isomer class are provided in Tables 8–10 below. 
The accuracy and LR+ for EASI calculated for valerylfentanyl using the 
NIST scores was only 81 % and 977, respectively, which is significantly 
worse than the accuracy and LR+ of 92.5 % and 2,529, respectively, 
calculated using the MAR as the classifying metric (Table 5). When using 
the threshold that provides one false positive, the number of false neg
atives is significantly larger using the NIST scores than when using 
MARs. Again, this trend is indicative of the significantly greater overlap 
in the distributions of NIST scores for known positive and known 
negatives.

Similarly, for isovalerylfentanyl relative to its nearest neighbors, the 
accuracy was 96.7 % using MAR and 90.4 % using the NIST scores. The 
LR+ decreased from 4,248 for MAR to 1,883 for the NIST score for 

Fig. 9. (A) Head-to-tail plot of randomly selected EI-mass spectra of o-MMAF (red) and m-MMAF (blue) showing a match factor (MF) of 896 and a reverse match 
factor of 896. (B) Head-to-tail mass spectra plot of randomly selected EI-mass spectra of m-MMAF (red) and p-MMAF (blue) showing a match factor (MF) of 928 and a 
reverse match factor of 928. Generated in NIST MS Search 2.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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valerylfentanyl relative to its nearest neighbors. The accuracy using 
NIST scores for C-3-MBF was greater than 99.9 % for both EASI and CNS 
relative to its nearest neighbors, so both approaches were successful at 
resolving this nearest neighbor from VF and IsoVF.

Table 9 and Table 10 show similar trends, e.g., that the performance 
using NIST scores as a classifier are notably worse than using MARs or 
Euclidean distances. In almost every comparison of EASI to CNS using 
NIST scores, EASI outperformed the CNS approach. Still, the poor per
formance of the NIST scores relative to MARs indicates that there is no 
advantage to enhancing the weight of high mass ions or low abundance 
ions after the EASI algorithm has made its spectral predictions.

3.2.5. Mahalanobis distances
As stated earlier, the Mahalanobis distance (dMahal) is a metric that 

takes the correlations in the data into account as it is calculated using the 
inverse of the variance-covariance matrix of the data set [61]. In our 
case the dMahal values were calculated with the same training sets as the 
EASI GLMs. The underlying principles of EASI are similar to the dMahal, 
in that the GLMs are built using the correlations that exist between the 
ion fragments, so it is prudent to compare both approaches.

The AUCs of the MAR, NIST scores from the consensus and EASI 
approaches are compared to the dMahal values for all isomer classes in 
Table 11 below. Overall, EASI matched or outperformed dMahal, for 
almost every isomer. The only exception was the AUCs for m-MFF, which 

is 0.969 for dMahal and 0.965 for EASI using the MAR. These results show 
that EASI modeling is competitive or superior to well-established met
rics for identifying outliers, such as dMahal. EASI has the advantage of 
being able to extrapolate beyond the training set to predict and classify 
data with different or unequal variances as the training set, whereas 
dMahal calculations are bound by confidence intervals defined by the 
training set. Values of dMahal are therefore more likely to exclude known 
positive spectra of different variance from the training set, such as those 
from different instruments or laboratories.

As seen across all metrics, the ortho forms in each isomer class are 
well differentiated from their meta and para forms. This result is due to 
the phenomenon known as the “ortho-effect,” in which the proximity of 
ortho-substituted aromatic compounds allows for unique rearrangement 
mechanisms that are conformationally less favorable for the meta- and 
para-substituted aromatics [62–64]. In the case of o-, m-, p-MMAF, the 
distribution of ions and their relative abundances for all three isomers 
are very similar, but the main differences between the ortho form and the 
meta and para forms is the presence of m/z 118 and 144 in the ortho EI- 
spectra but m/z 120 and 146 in the meta and para EI-spectra, and the 
reduced relative abundance of m/z 204 in the meta and para forms. 
Similarly for o-, m-, p -MFF, m/z 106 and 158 are present in the ortho 
form compared to m/z 105 and 160 present in the meta and para forms, 
and m/z 297 is less abundant in the ortho form compared to the meta and 
para forms.

Fig. 10. (A) Head-to-tail plot of randomly selected EI-mass spectra of o-MFF (red) and m-MFF (blue) showing a match factor (MF) of 480 and a reverse match factor 
(RMF) of 480. (B) Head-to-tail mass spectra plot of m-MFF (red) and p-MFF (blue) showing a match factor (MF) of 903 and a reverse match factor (RMF) of 903. 
Generated in NIST MS Search 2.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Whereas the ortho form is easily distinguished from the other two 
isomers, the meta and para forms are not easily distinguished from one 
another. In isomer class 2, m-MMAF and p-MMAF only had one differing 
ion between their 20 most abundant ions, which was m/z 58 and m/z 69, 
respectively. In isomer class 3, m-MFF and p-MFF only had one differing 
ion between their 20 most abundant ions, which was m/z 67 and m/z 70, 
respectively. The AUCs of all the compared pairs of isomers except for m- 
MFF showed that EASI outperformed the consensus approach when 
using any evaluation metrics as a binary classifier. The AUCs for the m 
and p-MFF comparison (NN) were superior using MARs and Euclidean 

distances relative to NIST scores (Table 11). In only one out of nine tests 
(m-MFF) of analogs relative to spectral nearest neighbors did dMahal 
outperform EASI; EASI provided the same or superior AUCs than dMahal 
for the remaining eight isomers relative to their nearest neighbors. 
Although the model for m-MFF struggled to differentiate m-MFF from p- 
MFF the p-MFF model provided much greater accuracies in resolving the 
two isomers. No attempt has been made here to optimize the discrimi
nation of specific isomers, either by using specific m/z values instead of 
all 20, or by using a combination of EASI models to make a single de
cision. For example, an algorithm could easily be derived to make a 

Table 6 
Summary of binary classification figures of merit for the mean absolute residuals (MAR) for isomer class 2; positional isomers of methylmethox
yacetylfentanyl (MMAF). NN = nearest neighbors from the same spectral set; All = entire database. Darker shading indicates greater than 90 % 
accuracy. Rates rounded to 3 or 4 d.p.

Table 7 
Summary of binary classification figures of merit for the mean absolute residuals (MAR) for isomer class 3; positional isomers of methylfuranylfentanyl 
(MFF). NN = nearest neighbors from the same spectral set; All = entire database. Darker shading indicates greater than 90 % accuracy. Rates rounded 
to 3 or 4 d.p.
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binary classification based on whether the MAR was closer to the m-MFF 
model or the p-MFF model. Such a comparison would be possible for the 
CNS approach, EASI or dMahal.

In the present work, no attempt was made to optimize the m/z values 
that were used for classification. In all cases, models were built for the 
20 most abundant ions in the training set of known positives for a sub
stance, and spectral measures of all 20 models were used in the classi
fication metrics. As described previously for cocaine identification, 
stepwise addition binary logistical regression analysis could be used as a 
method to create a binary classification model to discriminate isomers 
that minimizes the number of required variables in the classification 

while maximizing the explainable variance between drug identities. 
Such refinement and optimization are beyond the scope of the current 
work.

4. Conclusions

This project demonstrated that consensus-based algorithms have 
limitations for spectrally similar analogs, especially when compared to 
reference spectra collected on different instruments. The expert algo
rithm for substance identification (EASI) can differentiate compounds 
with superior figures of merit relative to the CNS approach. Compared to 

Fig. 11. (A) ROC curves using the MARs from the consensus and EASI methods for VF as the known positive. (B) ROC curves using the dot products from the 
consensus and EASI methods ROC curve for IsoVF as the known positive. The different metrics and models highlight that EASI outperforms the consensus approach 
regardless of the model or metric.

Fig. 12. (A) Frequency plot of the consensus approach using Euclidean distances of the known positives (o-MMAF, n = 970) and known negatives (m-, p-MMAF, n =
4,600). (B) Frequency plot of the EASI approach using Euclidean distances of the same known positives (o-MMAF, n = 970) and known negatives (m-, p-MMAF, n =
4,600). (C) Frequency plot of the consensus approach using Euclidean distances of the known positives (o-MFF, n = 1,245) and known negatives (m-, p-MFF, n =
5,694). (D) Frequency plot of the EASI approach using Euclidean distances of the known positives (o-MFF, n = 1,245) and known negatives (m-, p-MFF, n = 5,694).
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the consensus approach, which uses the mean of the known positives as 
the exemplar spectrum to which all other spectra are compared, EASI 
generally had smaller MARs and Euclidean distances, larger dot prod
ucts and NIST scores, and superior LR+ for the known positive spectra 
relative to known negative spectra across all nine drug models. The 
different metrics for spectral comparisons had a much smaller effect on 
the overall binary classification rates than whether to use EASI or the 
consensus approach. Therefore, GLM modeling demonstrates more ac
curate predictions of m/z abundances for spectra collected on different 
instruments. EASI also achieved errorless identification in each isomer 
class with at least one fentalog (C-3-MBF, o-MMAF, and o-MFF), there
fore providing LR+ exceeding 50,000 for these isomers.

Binary classification using EASI with NIST scores routinely out
performed the consensus approach with NIST scores. For MMAF and 
MFF isomers, differentiation of the meta isomers from their para isomers 
was especially difficult, and errorless identification using NIST scores 
was not achievable using either approach. Based on MARs and Euclidean 
distances, AUCs, and LR+, EASI typically outperforms the consensus 
approach at every metric. On average, MARs using EASI were reduced 
by a factor of 5 relative to the consensus approach.

The beta coefficients for the linear models are provided for nine 
different fentanyl analogs. These models only require the consideration 
of 20 ions in an EI spectrum to provide the predicted abundances. 
Theoretically, the models for each fentalog are suitable for any/all 70-eV 

Table 8 
Summary of figures of merit for the NIST scores for binary classification for isomer class 1. Bolded cells show the best performing model for each 
compound. NN = nearest neighbors from the same spectral set; All = entire database. Rates rounded to 3 or 4 d.p.

Table 9 
Summary of figures of merit for the NIST scores for binary classification for isomer class 2. NN = nearest neighbors from the same spectral set; All =
entire database. Rates rounded to 3 or 4 d.p.
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EI spectra on any instrument past and present. The general linear models 
themselves are only dependent on known positives, so are not dependent 
on known negatives in any way. However, the performance of each bi
nary classification model is somewhat dependent on the population of 
known negatives, so the threshold values and LR+ established here may 
need to be re-assessed if new nearest neighbors are identified for any of 
the modeled analogs.

The idea of using a decision-making algorithm, with LR+ values, to 
assist expert witnesses in forming opinions is not new. With EASI, ana
lysts are provided with empirical evidence, like the MAR for a spectrum 
and its associated LR+ value, which is based on a database of tens of 
thousands of replicates. The LR+ values here have more meaning than 
the uncalibrated/untested Match scores and probability values one 
would typically obtain from traditional search algorithms. EASI en
hances the weight of evidence provided by the mass spectrometric re
sults, and this weight of evidence is independent of the other factors of 
the analytical scheme for the seized drug analysis. An analyst would 
have to combine all the results from their analytical scheme before they 
form an opinion.

The results show that EASI helps meet NIJ’s operational re
quirements regarding the ability to compare data between laboratories, 

hence reducing the need for standard reference materials in the future. 
Unlike AI/machine learning approaches, the general linear modeling 
employed here is quite intuitive and easily reveals the factors (m/z 
values) that influence the classification rates. The equations used here to 
predict the abundance of peaks in spectra are the same as those used to 
predict the heights of adults from their biological parents by Galton in 
the late 1800s. Such transparency in the algorithm should help forensic 
practitioners understand and explain the algorithm to others, including 
jurors in court.
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