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ABSTRACT: Panax quinquefolius L (P. quinquefolius L)
samples grown in the United States and China were analyzed
with high performance liquid chromatography−mass spec-
trometry (HPLC−MS). Prior to classification, the two-way
data sets were subjected to pretreatment including baseline
correction and retention time (RT) alignment. Principal
component analysis (PCA) and projected difference resolution
(PDR) metrics were used to evaluate the data quality and the
pretreatment effects. A fuzzy rule-building expert system
(FuRES) classifier was used to classify the P. quinquefolius L samples grown in the United States and China with the optimized
partial least-squares (o-PLS) classifier as the positively biased control method. A classification rate as high as 98 ± 3% with
FuRES was obtained after baseline correction and RT alignment, which is equivalent to the result obtained by using the positively
biased o-PLS control method (98 ± 3%). RT alignment improved the classification rates for both FuRES and o-PLS classifiers
(18% improvement for the FuRES classification rate and 10% improvement for the o-PLS classification rate with baseline
correction). From the rule obtained to classify the P. quinquefolius L samples grown in the United States and China, peaks were
identified that can be prospective biomarkers for differentiating samples from different growth regions. HPLC−MS with
chemometric analysis has the potential to be used as an authentication method for P. quinquefolius L grown in China and the
United States.

Ginseng has been widely used as an important medicinal
herb or a dietary supplement in the Far East for a few

thousand years and has gained more recognition in the West in
the last few decades.1 All species in the genus Panax contain
common constituents including ginseng saponins (ginseno-
sides), polysaccharides, polyynes, flavonoids, volatile oils,
polyacetylenic alcohols, and fatty acids, among which ginseno-
sides are considered the major bioactive ingredients for their
therapeutic effects.1−4

As one of the main species in the Panax genus, Panax
quinquefolius L (P. quinquefolius L, American ginseng) has been
reported to have the functions of reducing stress, lowering high
blood sugar, modulating the immune system, improving
working memory, and preventing cancer, etc.5−8 Nevertheless,
the same P. quinquefolius L species cultivated in different
geographical locations can result in differences in chemical
compositions especially for the medicinal active ginsenosides
although the differences within the species (differences rang-
ing from 4% to 10% of a total ginsenosides content in
P. quinquefolius L roots2) are much smaller than those among

species in the same Panax genus.9,10 The differences within the
same P. quinquefolius L species cultivated in different geo-
graphical locations can cause differences in medicinal efficacy,
but the differentiation of cultivation regions as part of the
quality control process is more difficult than the differentiation
among different species of the Panax genus because of the great
similarity in chemical constituents among different cultivars.
Several reports have been available in the literature focusing on
the differentiation among species of the same Panax genus,
different cultivars or different ages of the same species by
employing DNA sequencing,11 high performance liquid
chromatography (HPLC) with either a UV detector or a
mass spectrometer detector,12,13 infrared spectroscopy,14−16

Raman spectroscopy,14,17 NMR,18,19 etc. Among all the
analytical methods for the analysis of ginseng, HPLC coupled
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with a mass spectrometer (HPLC−MS) is a powerful technique
used for this purpose. HPLC−MS has been demonstrated as
very effective and versatile not only for the structure
identification and quantification of the ginsenosides, but also
can yield a profile that is rich in information for
profiling.13,20−28

If a suitable analytical method is carefully chosen, a chemical
fingerprint that profiles the chemical composition of a botanical
product such as ginseng can be developed. As an alternative to
conventional methods that use active ingredients such as
ginsenosides as biomarkers,19 chemical fingerprinting is
frequently used in quality control, authentication, and differ-
entiation of ginseng products with the help of chemometric
methods such as pattern recognition, spectral correlative
chromatograms, similarity estimation, and multivariate reso-
lution.25,29

Chemometrics has shown superb utility in obtaining
information from complex data sets. It is especially useful in
the differentiation and classification of samples that give
complicated chromatographic and spectral fingerprints, which
is usually an overwhelming task to distinguish by visual
examination.30,31 Of the chemometric pattern recognition
techniques, the fuzzy rule-building expert system (FuRES)
has shown utility and robustness in differentiation and
classification of samples for many applications.32−37 Because
the differences among ginseng samples cultivated in different
geographical locations are smaller with respect to the chemical
profiles as compared with those among different species of
Panax genus, classification and prediction of ginseng sample
types from the same species from different origins presents a
formidable problem.38,39 To date, only one report has been
published focusing on the differentiation of P. quinquefolius L
samples grown in the United States and China.10 This report
illustrated the chromatographic differences between growing
locations, but it never quantitatively evaluated the classification.
In the present study, classifiers were constructed to

discriminate P. quinquefolius L samples grown in different
regions of China and the United States. Using HPLC−MS as
the two-way data collection method to obtain the chromato-
graphic and spectral fingerprints of each sample, FuRES was
used to predict cultivation locations of these two classes of
ginseng samples. Data preprocessing techniques such as
baseline correction and retention time (RT) alignment were
necessary because baseline and RT shift affected the
classification accuracy.31

■ EXPERIMENTAL SECTION
1. Samples, Reagents, and Sample Pretreatment.

P. quinquefolius L samples grown in China (12 samples) and
in the United States (12 samples) were used. The information
of age, size, and specific locations in each country was not com-
pletely available and was believed to vary (see the Supporting
Information).
HPLC-grade acetonitrile (EMD Chemicals Inc., Gibbstown,

NJ) and HPLC-grade methanol (PHARMCO-AAPER, Brook-
field, CT, US) were used for the mobile phase components and
the extracting solvent, respectively. Deionized water (18 MΩ)
for sample preparation and as one component of the mobile
phase was obtained using a water purification system
(Nanopure Diamond Barnstead, Thermo Scientific).
Ginseng root samples were ground into fine powder and

extracted with methanol−water (60:40, volume ratio) assisted
by sonication. The extracted samples were centrifuged and then

the supernatant was filtered by using 13-mm (pore size of 0.45 μm)
polyvinylidene fluoride (PVDF) syringe filters (General Separation
Technologies, Inc., US).

2. Instrumentation. An Agilent 1100 HPLC equipped with
a SUPELCOSIL RP LC-C18 column (25 cm × 4.6 mm ×
5 μm) was used for separation. A Thermo Finnigan PolarisQ
mass spectrometer modified with a Thermo Finnigan Deca XP
electrospray ionization (ESI) source and ion optics was used to
couple with the HPLC for the online mass spectra collection, as
described previously.40 Data was collected using the XCalibur
development kit (XDK) provided by Thermo and was custom-
modified in Visual Basic 6.0 (Redmond, WA, USA).

3. HPLC-MS Data Collection Conditions. The mobile
phase was composed of (A) water and (B) acetonitrile.
Gradient elution was used as detailed in the Supporting
Information. The column temperature was controlled at 35 °C.
For the mass spectra collection, a mass range extension

(MRE) program was written to eject ions at a qz value of 0.45
to double the mass scan range. The mass spectra were collected
in negative ion mode with voltage of −4.5 kV. The capillary
temperature was set to 350 °C, and the electron-multiplier was
set to 1.375 kV.

4. Data Pretreatment. 4.1. Baseline Correction. In this
work, the baseline of the total ion current (TIC) chromato-
grams of all 24 samples was corrected with this in-house
algorithm described in the Theory section of the Supporting
Information with an error threshold of 0.41 One hundred
spectra at the end of each chromatogram where there was no
analytical signal were chosen to build the basis set that
comprised 50 orthogonal components.

4.2. RT Alignment. RT variation among runs is a factor
influencing classification rates because in this work two-way
(TIC chromatograms and mass spectra) data sets were used for
the classification instead of peak tables. RTs were aligned with
an in-house program that uses a polynomial to adjust the
retention times so that the correlation with the mean spectrum
is maximized. The correlation is applied to the two-way image
so distinct mass peaks assist in the alignment process. The
alignment algorithm uses a dendrogram based on Euclidean
distance to define nearest neighbors of the two-way images.
Each pair of neighbors is aligned to their average two-way
object. Once this alignment is achieved, the algorithm
iteratively aligns the objects to the averages of the aligned
objects calculated at each branch of the dendogram until the
root of the tree is obtained. In other words the training objects
will ultimately be aligned to a global average. This global
average is stored, and then, each prediction object is aligned to
this global average.
An object is aligned with respect to retention time to the

average object using a polynomial mapping of retention times
(i.e., a fourth-order polynomial was used). The mapping
function stretches or compresses the retention times. For each
new retention time, the mass peaks are calculated using the
“pchip” interpolation, an option of the MATLAB “interp1”
function. Lastly, the Euclidean correlation of the two-way
object to the average two-way object is calculated. The
correlation is maximized by optimizing the polynomial
coefficients using a nonlinear simplex (MATLAB function
“fminsearch”).

5. Classification by the FuRES Classifier with
Optimized-PLS as the Control Method. After the pretreat-
ment of the data sets, FuRES and o-PLS models were
constructed using identical data for model building. The
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model-building and prediction data were selected using three
Latin partitions that were bootstrapped 10 times.42 The
prediction results across the three partitions were pooled and
then averaged across the 10 bootstraps.

■ RESULTS AND DISCUSSION
1. Optimization of Data Collection Methods. In this

work, the purpose was to quantitatively discriminate US grown
P. quinquefolius L samples from Chinese grown P. quinquefolius
L samples using HPLC-MS data. The HPLC run time was
optimized to 40 min while the separation of components served
well for the classification. The separation of components can be
seen in a two-way data image (the TIC chromatogram and
mass spectra that is displayed in the Supporting Information).
In this figure, a complex and rich pattern of peaks can be seen.
2. Pretreatment Effects of Data. Baseline drift can

adversely affect pattern recognition. The comparison between
the TIC chromatograms before and after baseline correction
treatment is given in Figure 1. From this figure, it can be seen

that the background was attenuated but not completely
removed. The reason the baseline is nonzero results from the
selection of a zero error threshold for the regularization. When
the nonzero background residuals are integrated to furnish the
TIC, the outcome will result in a constant baseline. However,
the drift from the solvent program was leveled while the peak
intensity and shapes were preserved.
RT alignment of TIC chromatograms is essential for cases

when two-way profiles are directly compared or for comparison
of one-way ion chromatograms. When the retention times of
the LC peaks shift, similar samples will be separated in the data
space making classification more difficult. RT drift can be
caused by column degeneration, column contamination,
fluctuation in the mobile phase, and/or any other environ-
mental factors such as temperature changes.
The chromatograms were aligned using the two-way data to

exploit all the information available from the mass spectral
domain. The TIC chromatograms of all 24 samples are plotted
to demonstrate the effect of RT alignment in Figure 2. In
Figure 2A, RT drift of the chromatograms among different runs
is apparent. In Figure 2B, the alignment has corrected the RT

drift. A consequence of this unbiased alignment procedures is
the similarity among chromatograms will increase which may
reduce the projected difference resolution (PDR) values among
the classes.31,36,37,43,44 The RT alignment improved the
classification rate significantly as discussed in the section of
classification results.

3. Principal Component Analysis (PCA) Results. PCA
scores of the data objects with baseline correction before and
after RT alignment are given in Figure 3. The ellipses are the
95% confidence intervals around the mean of each class. The
relative and the absolute variances of the PCs are given as the
numbers in the parentheses. Although the object scores are still
overlapped, the alignment improved the separation of the two
classes. However, only two dimensions (PCs) are given here;
there is a possibility that the clusters may be resolved in the
higher dimensional data space as will be discussed in the FuRES
and o-PLS Classification Results section.

4. PDR Results. A PDR value is analogous to chromato-
graphic resolution in that a value of 1.5 or higher is considered
to be the criterion for two classes to be baseline-resolved in a
multidimensional data space. The minimum PDR value
represents the worst separation between two classes. The
minimum resolutions of the ginseng data after baseline
correction with 10 bootstraps with and without RT alignment
were 0.89 ± 0.03 and 0.52 ± 0.03, respectively, which
demonstrates a significant improvement. Although the
minimum PDR value did not exceed 1.5, the FuRES models
would yield accurate classification as will be seen later. A value

Figure 1. Demonstration of baseline correction effect. Blue is before
baseline correction; red is after baseline correction. The TIC of sample
WSQ2 (AM) is calculated from the baseline corrected two-way image.

Figure 2. Reconstructed total ion current chromatograms with
baseline correction before (A) and after (B) RT alignment. RT from
0.5 to 28 min was used for classification.
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of 1.5 indicates the class distributions are resolved along a
vector defined by the differences between the data averages of a
pair of classes. For PDR, this difference vector may not be
optimal for resolving data from some classes.
5. FuRES and o-PLS Classification Results. Randomly

selected subsets of the two-way data objects were used to build
30 FuRES models and 30 o-PLS models in a matched fashion
so that each method was evaluated with the same data. The
models were constructed from three Latin partitions and ten
bootstraps. For each bootstrap, the Latin partition divides the
data into a training set and a prediction set, so that each two-
way object was used only once for prediction and the same
class distributions are maintained between training and
prediction sets. Principal component transformation was used
to compress the model building data size to 16 × 16 for
building classifiers. The prediction data set was compressed by
projection onto the same principal components that were
calculated from the training data set and a data size of 8 × 16
was obtained. Each evaluation took about 30−40 min of CPU
time.
The average prediction rates before and after RT alignment,

with and without baseline correction, which are reported with
95% confidence intervals for the ten bootstrapped Latin
partitions, are given in Table 1.
From Table 1, one can see that RT alignment improved the

classification accuracy. RT alignment improved the classifica-
tion rates significantly both with baseline correction (80 ± 4−
98 ± 3% for FuRES and 88 ± 3−98 ± 3% for o-PLS) and
without baseline correction (86 ± 6−99 ± 1% for FuRES and

94 ± 4−99.6 ± 0.9% for o-PLS) with both the FuRES and
o-PLS classifiers. Baseline correction decreased the classification
rates of the two ginseng classes when the retention times were
aligned afterward. The classification results are given without
and with baseline correction as follows: 99 ± 1%, 98 ± 3% for
FuRES and 99.6 ± 0.9%, 98 ± 3% for o-PLS. A similar decrease
in classification performance was also obtained for the data
without RT alignment (86 ± 6, 80 ± 4% for FuRES and 94 ±
5, 88 ± 3% for o-PLS). Another evaluation was conducted with
the alignment applied to each calibration set of data, and then
fitting the prediction data to the mean of the aligned calibration
set. The results obtained by using the latter alignment are
reported in the two lower rows in Table 1. Similar
classifications rates corresponding to the scenarios described
above were obtained. Because the decreases in prediction
accuracy that arose from the baseline correction algorithm were
not statistically significant, this preprocessing method was
maintained to remove background components from the data.
o-PLS was used as the positively biased control method in

this work. In a partial least-squares model, the number of latent
variable for prediction is fixed. However, in an o-PLS model,
the number of latent variables is selected that yields the best
prediction results with respect to minimizing the root-mean-
square prediction error.31,35,37 Because the classes are defined
this measure is positively biased and presents the best case for
prediction. It is a suitable reference method for comparing
other algorithms. If FuRES can achieve similar classification
rates as o-PLS then it is an effective classifier.
After data pretreatment, the classification rates from FuRES

and o-PLS as listed in the first two rows in Table 1 were both
98 ± 3%, and a matched sample comparison of the results
achieved a t-test of −0.56 with a p-value of 59%, indicating no
significant difference between these two methods at a 95%
confidence level. The samples in each category were very
diverse with respect to suppliers, sublocations, shape, and size,
which could result in variation among samples from the same
class so that the classes are less precisely defined. It is
reasonable to expect that if the samples were from a smaller
area in each country and with the same age and were similar in
size, the classification would be less challenging than the
current one. However, even with the above-mentioned
difficulties, the classification was successful as exhibited by the
high classification rate of 98 ± 3%.

Figure 3. PCA score plots of samples before (left) and after (right) RT alignment with baseline correction. Note: The ellipses show 95% confidence
intervals. The first two principal components span 51% of the variance before RT alignment and 54% of the variance after RT alignment. The second
number in the parentheses denotes the absolute variance.

Table 1. Classification Rates with 95% Confidence Intervals
by FuRES and o-PLS Classifiers with No Alignment (−RT)
and RT Aligned (+RT) and without Baseline Correction
(−BC) and with Baseline Correction (+BC)a

−RT, −BC +RT, −BC −RT, +BC +RT, +BC

FuRES 86 ± 6% 99 ± 1% 80 ± 4% 98 ± 3%
o-PLS 94 ± 5% 99.6 ± 0.9% 88 ± 3% 98 ± 3%
FuRESa 89 ± 3% 95 ± 2% 87 ± 5% 96 ± 1%
o-PLSa 93 ± 2% 97 ± 2% 94 ± 5% 96 ± 3%

aAlignments that were applied to the calibration set, and the
prediction data were fit to the mean of the aligned training data.
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6. FuRES Model. The FuRES classification tree obtained
from the entire data set after background correction and RT
alignment is given in Figure 4. In a FuRES classification tree,
the classification entropy is denoted as H. The numbers refer to
the rule used for classification at each branch of the tree. Nc is
the number of training objects at each leaf. The FuRES
classification tree demonstrates perfect classification of
P. quinquefolius L samples grown in China and the United States.
Only one rule was needed to classify two classes.
The rules obtained from FuRES are linear discriminants so

they are amenable to interpretation and resemble the two-way
data objects. In Figure 4, a two-way surface of the FuRES
discriminant that comprises positive and negative peaks is
displayed. The ten largest magnitude peaks are listed in
descending sequence from the two-way rule in Table 2.
Because the MRE program was not working successfully in

the tandem mode, collision induced dissociation (CID) profiles
of the major ginsenosides in the two-way rule could not
be obtained. Fortunately, most ginsenosides found in

P. quinquefolius L have been identified in the literature. Therefore,
the ions listed in Table 2 can be putatively assigned according
to previous findings. The identification of an ion with m/z of
1031 is likely to be ginsenoside malonyl-Rd because this
ginsenoside occurs in P. quinquefolius L with a molar mass of
1032 u. The identification of an ion with m/z of 955.5 could be
ginsenoside Ro (or Ro isomer).23 The ion with m/z of 1077.8
is putatively ginsenoside Rc although ginsenosides Rb2 and Rb3
have the same molecular mass. Ginsenoside Rc has high
polarity and will elute earlier than the other isobaric
ginsenosides Rb2 and Rb3 while the latter two sometimes are
very hard to separate because of their similar polarities.
In the raw extracted ion current chromatogram (not shown),

two peaks have m/z of 1077.8 and the first one at RT of 20.2 min
played a major role in the two-way rule. The second peak
was very wide and it might be ginsenosides Rb2 and Rb3 with
poor resolution. The ion with m/z of 1163.3 could be mRb2 or
mRc. Two peaks with m/z of 1163.3 were displayed in the
extracted ion current chromatogram at RT 13.0 min and RT
13.8 min. The peak that played a role in the two-way rule was at
RT 13 min. Therefore, it was very likely to be ginsenoside mRc
because of its higher polarity than mRb2.
Doubly charged species of the decarboxylated derivatives of

ginsenoside malonyl-Rb1 and its isomer (molar mass: 1194.6 u)
gave an ion with m/z of 574.3.23 When the negatively charged
malonyl-Rb1 or its isomer loses CO2, an ion with m/z of 1149.6
is produced.45 The acetyl-ginsenoside with ion of m/z of 1149.6
is not readily found in white ginseng (naturally dried without
heat treatment). The doubly charged species of this acetyl-
ginsenoside has m/z of 574.3.
The extracted ion chromatogram in the Supporting

Information displays prominent peaks in the multivariate
FuRES rule. The second and the seventh largest peaks in the
rule were m/z 574.3 at RT 12.6 and 22.6 min. Similarly, the ion
with m/z of 553.8 could be the doubly charged species of
ginsenoside Rb1 with molecular mass of 1108.6 because ion
m/z 553.8 appeared together with ion with m/z of 1107.6. (Data is

Figure 4. FuRES classification tree with the two-way 3-dimensional classification rule illustrated for the two classes of ginseng samples: (upper left)
peaks with positive weight coefficients; (upper right) peaks with negative weight coefficients. The color bar indicates the weight coefficient values of
peaks in the two-way rule.

Table 2. Ten Largest Magnitude Peaks in the Two-Way
FuRES Rule

order weight coefficient RT (min) m/z mean/Stda

no. 1 −0.220 14.9 1031 −11.4
no. 2 0.085 12.6 574.3 4.7
no. 3 −0.079 7.9 595.3 −6.1
no. 4 0.060 10.8 955.5 3.2
no. 5 0.051 20.2 553.3 4.2
no. 6 0.048 20.2 1077.8 3.8
no. 7 0.038 22.6 574.3 6.7
no. 8 −0.037 13.8 1031 −8.8
no. 9 −0.032 13.0 1163.3 −7.0
no. 10 0.028 10.9 926.1 3.2

aNote: Std is the standard deviation of a peak among 30 BLP models.
Mean is the average of the peak weight coefficient obtained from the
30 BLP models.
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not given.)10,23 Ions with m/z of 926.1 and 595.3 could not be
assigned.
Although some peaks in the two-way rule have large mean

weight coefficients, they are not reported because their mean/
Std values (signal-to-noise ratios (SNRs)) are less than 3, which
means these discriminant peaks are not as significant as those
with larger SNRs. The peaks in the two-way FuRES rule
reported in Table 2 have both large absolute mean weight
coefficients and SNR values greater than 3.
These ten peaks in Table 2 were used to evaluate the

classification accuracy while all parameters and processing
remained the same as those leading to the results in the first
two rows in Table 1 (with baseline correction and RT
alignment before feature selection). The 10 bootstrapped 3
Latin-partition evaluation yielded accuracies of 99 ± 1% by
using the FuRES classifier and 99.6 ± 0.9% by using o-PLS with
a t-test value of 0.43 and a p-value of 68%, indicating no
significant difference between these two methods. The PDR
value after baseline correction and RT alignment was improved
from 0.47 ± 0.03 to 0.94 ± 0.05. These results are comparable
to those obtained with the complete two-way data sets.
When these ten key peaks identified in the FuRES rule were

removed from the data, the prediction accuracy decreased to
81 ± 5% for FuRES and 89 ± 5% for o-PLS. The PDR values
also decreased to 0.499 ± 0.009 after RT alignment, which was
significantly less than that obtained from the complete data set.
The first ten largest-magnitude peaks were larger than many
other peaks in the two-way rule; however, these other peaks
also appear in the rule because they convey discriminating
information from the information rich LC−MS measurements.
When the first ten largest-magnitude peaks were eliminated
from the data set, other discriminating ions remained in the
data that could be exploited by FuRES for effective
classification.
When the two most prominent peaks (14.9 min, m/z 1031

and 12.6 min, m/z 574.3) in Table 2 were used for feature
selection, the PDR value was 0.92 ± 0.01 and the prediction
accuracies were 96 ± 3% and 97 ± 2%, respectively, for FuRES
and o-PLS classification. The matched sample t-test for FuRES
classifier and the o-PLS classifier gave a value of −0.61 and a p-
value of 55%, showing no significant difference between these
two methods. When the third most prominent peak was added
to the evaluation, the classification rate did not exhibit a
statistical improvement.
The PCA score plot using these two selected features for the

data is given in the Supporting Information. The first and
second PCs span 69% of the variation of the data set.
The visual observation of mass spectra is consistent with the

above result. From enlarged mass spectra displayed in the
Supporting Information of the ginseng samples grown in the
United States and China, it can be seen obviously the mass
spectral values of these two key peaks played an important roles
in the two-way classification. For example, the peak ratios of m/
z 574.3 to peak m/z 1031 are significantly different between the
two classes. The intensity ratio of peak m/z 574.3 to peak m/z
1031 grown in China is about 2.8:1 for the 12 samples and that
in the samples grown in the United States is about 1.1:1 for the
12 samples. Because m/z 574.3 was likely the doubly charged
species of the decarboxylated derivative of ginsenoside malonyl-
Rb1 or its isomer, the total amount of ions with m/z 574.3, m/z
of 1149.6, and m/z 1193.6 needs to be considered when the
detection condition is different from the current one. This

feature has the potential to be used for the visual preliminary
differentiation of these two classes of samples.

■ CONCLUSIONS

P. quinquefolius L samples grown in the United States and
China were classified by combining the HPLC−MS and
chemometric processing. The FuRES classifier gave a 98 ± 3%
classification rate which was statistically equivalent to that
obtained from the positively biased o-PLS reference method.
Some data pretreatment techniques such as baseline

correction and RT alignment are necessary when baseline
shift and/or RT shift occur during data acquisition. Both
baseline correction and RT alignment were applied before the
data sets were subjected to classification. The classification
rate by using the FuRES classifier was not improved by baseline
correction without RT alignment; when both baseline
correction and RT alignment were applied, the classification
rate for the FuRES classifier was improved by 18% compared to
using only baseline correction as a preprocessing method.
One FuRES rule was constructed for the two classes.

Prediction accuracies were obtained by using the two largest
peaks and ten largest peaks in the rule to select features from
the data to assess the informing power of these peaks. In
addition, removal of the ten discriminatory peaks from the data
detrimentally affected the classification performance.
It is interesting to note that the ratio of intensities of ions at

m/z of 574.3 and 1031, which correspond to the first two
prominent peaks of the two-way FuRES rule, was significantly
different between the two classes. The ratio of intensities of
ions at m/z of 574.3 and 1031 was 1.1:1 for the samples grown
in the United States and that for the samples grown in China
was 2.8:1. By selecting only two peaks from the two-way rule
data these two ions, a prediction rate of 96.3 ± 0.9% with the
FuRES classifier was obtained, which is comparable to that of
98 ± 3% obtained by using the complete data set.
It is reasonable to propose that the two-way HPLC−MS data

of P. quinquefolius L grown in different geographical locations
can be assessed using this ratio; when the ionization conditions
change, ions with m/z of 1149.6 and m/z 1193.6 may need to
be taken into consideration because m/z 1193.6 is the
precursor of m/z 1149.6 and 574.3 is the doubly charged
species related to m/z 1149.6. This work has the potential to be
used as an authentication method for P. quinquefolius L samples
grown in different geographical locations. The future work
related to this project will focus on the classification of
P. quinquefolius L samples and Panax ginseng samples with
different ages and from different cultivation sublocations with
the proposed technique.
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